Package ‘gDRutils’

February 19, 2026
Type Package

Title A package with helper functions for processing drug response
data

Version 1.8.0
Date 2025-09-30

Description This package contains utility functions used throughout the gDR platform
to fit data, manipulate data, and convert and validate data structures.
This package also has the necessary default constants for gDR platform.
Many of the functions are utilized by the gDRcore package.

License Artistic-2.0
LazyLoad yes
Depends R (>=4.2)

Imports BiocParallel, BumpyMatrix, checkmate, data.table, digest, drc,
jsonlite, jsonvalidate, methods, MultiAssayExperiment,
S4Vectors, stats, stringr, SummarizedExperiment, gs, utils

Suggests BiocManager, BiocStyle, futile.logger, gDRstyle (>= 1.7.1),
gDRtestData (>= 1.7.1), IRanges, knitr, lintr, mockery, purrr,
rcmdcheck, rmarkdown, scales, testthat, tools, withr, yaml

URL https://github.com/gdrplatform/gDRutils,

https://gdrplatform.github.io/gDRutils/

BugReports https://github.com/gdrplatform/gDRutils/issues
biocViews Software, Infrastructure

VignetteBuilder knitr

ByteCompile TRUE

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

SwitchrLibrary gDRutils

DeploySubPath gDRutils

Encoding UTF-8

git_url https://git.bioconductor.org/packages/gDRutils
git_branch RELEASE_3_22

git_last commit b7dd34b

https://github.com/gdrplatform/gDRutils
https://gdrplatform.github.io/gDRutils/
https://github.com/gdrplatform/gDRutils/issues

git_last_commit_date 2025-10-29
Repository Bioconductor 3.22
Date/Publication 2026-02-18

Author Bartosz Czech [aut] (ORCID: <https://orcid.org/0000-0002-9908-3007>),
Arkadiusz Gladki [cre, aut] (ORCID:
<https://orcid.org/0000-0002-7059-6378>),
Aleksander Chlebowski [aut],
Marc Hafner [aut] (ORCID: <https://orcid.org/0000-0003-1337-7598>),
Pawel Piatkowski [aut],
Dariusz Scigocki [aut],
Janina Smola [aut],
Sergiu Mocanu [aut],
Allison Vuong [aut]

Maintainer Arkadiusz Gladki <gladki.arkadiusz@gmail.com>

Contents

gDRutils-package
.convert_mae_summary_to_jSON« . v v v bt e e e
.convert_norm_specific_metricso oo
prep_cd_conc_cap_dict
set_invalid_fit_params L L e
snap_conc_to_model
standardize CONC L e e
addClass e e e e
AGETEZALE_ASSAY + & v v v e
apply_bumpy_function Lo
assert_choices
average_biological_replicates_dt
average_pvalues e e
calc_sd
capVals e
cap_assay_infinitieso
cap_xc50 . .. e e
convert_colData_to_jsono
convert_ combo_data to dt
convert_combo_field_to_assay o
convert_mae_assay_to_dt
CONVErt_Mae_to_JSOM v v v v v e bt e et e e e e e e e e
convert_metadata_to_json
convert_rowData_to_json oo
convert_se_assay_to_custom_dt
convert_se_assay_to_dt
CONVErt_SE_tO_JSOM o . v v v vt e ettt e e e
define_matrix_grid_positions
demote_fields
df to_bm_assay
extend_normalization_type_nameo
it CUIVES o o e e e e e
flatten e e e e e

Contents

https://orcid.org/0000-0002-9908-3007
https://orcid.org/0000-0002-7059-6378
https://orcid.org/0000-0003-1337-7598

Contents

3
gen_synthetic_data 30
GEOMEIIIC_MEAN v v v v v e e e e e e e e e e e e 31
get_additional_variables 31
get_assay_dt_duplicated_rows oL 32
GEL_ASSAY_MNAMES . .« . v v v v v e e e e e e e e e e e e e e e e e 32
get_assay_req_uniq_cols 33
get_combo_asSay_NaAMES v v v v v e e e e e e e e e e e e e e e 34
get_combo_base_assay_Nameso ie e e e e e e e e e e e 34
get_combo_excess_field_nameso o 35
get_combo_SCOre_assay_NAMES « v v v v v v e e e e e e e e e e e e e 35
get_combo_score_field_names 36
get_default_identifiers 36
get_duplicated_1rows L e e 37
GEL_ENV_aSSaAY_NAMES« ¢ o v v v v e e e e e e e e e e e e e e e e 37
GELLENV_VAL « . . v v v v e e e e e e e e e e e e e e e 38
get_expect_one_identifiers L 39
et_eXperiment_groups vt i e e e e e e e e e e 39
get_gDR_session_info 40
get_identifiers_dt L. L 40
get_idfs_synonyms 41
get_isobologram_columns e 41
get MAE identifiers L 42
Et_NON_EMPLY_ASSAYS . « « ¢ v v v v v e e e e e e e e e e e e e 42
get_optional_coldata_fields 43
get_optional_rowdata_fields 43
get_required_identifierso 44
get_settings_from_json e 44
get_supported_exXperimentso e 45
get_synthetic_data 45
get_testdata L. e e e 46
get_testdata_codilution 46
get_testdata_combo L L 47
has_assay_dt_duplicated_rows 47
has_dt_duplicated_rows L 48
has_single_codrug_data. 48
has_valid_codrug_data 49
headers 50
identifiers e e e e e e e e 51
identify_unique_se_metadata_fields 52
IS_ANY_EXP_eMPLY . . . v v o e 53
is_combo_data e e e e e e e e e 53
IS_EXP_CMPLY .« . o v v v e e e e e e e e e e e e e 54
IS_MAC_EMPLY .« . v v v v e 54
logisticFit e 55
LoOp . . o e 57
MAEDDPLY . . . e e 58
map_conc_to_standardized_conc L oo 59
meolData e e e 59
METZE_ASSAY + « « v v v e 60
merge_ MAE 61
merge_metadata e e e 62

merge_SE L e 62

4 gDRutils-package
modifyData 63
mrowData e e e e 64
predict_conc_from_efficacy L 65
predict_efficacy_from_conc oL oo 66
predict_smooth_from_combo oL 67
prettify_flat_metrics e 67
process_batch 68
promote_fields L. e e 69
refine_coldata 70
refine_rowdata e 71
remove_codrug_data Lol e 71
remove_drug batch L. 72
rename_bumpy L e 73
rename_DFrame e 74
round_concentration e e e e e 75
set_constant_fit_paramso 75
set_unique_cl_names L.l 76
set_unique_cl_names_dt 76
set_unique_drug_names u e e e e e e e e e e e e e 77
set_unique_drug_names_dt L. oL 78
set_unique_identifiers Lo e 79
set_unique_names_dtl 79
SE_metadata e 80
shorten_normalization_type_nameot 81
split_big_table_for_xIsx 82
split_SE_components 83
standardize_mae L. e e e 84
standardize_SE L e e 84
strip_first_and_last_char 85
throw_msg_if _duplicates 85
update_env_idfs_from_mae Lo 86
update_idfs_synonyms 87
validate_dimnames e e e e e 87
validate_identifiers e e 88
validate_json L. e e e e e e e e 89
validate_ MAE e 89
validate_mae_with_schema 90
validate_SE e 91
validate_se_assay_Name v it e e e e e e e e 91

Index 93

gDRutils-package gDRutils: A package with helper functions for processing drug re-
sponse data

Description

This package contains utility functions used throughout the gDR platform to fit data, manipulate
data, and convert and validate data structures. This package also has the necessary default constants
for gDR platform. Many of the functions are utilized by the gDRcore package.

.convert_mae_summary_to_json

Value

package help page

Note

To learn more about functions start with help(package = "gDRutils")

Author(s)

Maintainer: Arkadiusz Gladki <gladki.arkadiusz@gmail.com> (ORCID)
Authors:

¢ Bartosz Czech (ORCID)
* Aleksander Chlebowski
¢ Marc Hafner (ORCID)

» Pawel Piatkowski

* Dariusz Scigocki

* Janina Smola

* Sergiu Mocanu

* Allison Vuong

See Also
Useful links:

e https://github.com/gdrplatform/gDRutils
e https://gdrplatform.github.io/gDRutils/
* Report bugs at https://github.com/gdrplatform/gDRutils/issues

.convert_mae_summary_to_json
Create JSON document with MAE summary

Description

Create JSON document with MAE summary, currently only experiment names

Usage

.convert_mae_summary_to_json(mae)

Arguments

mae MultiAssayExperiment object.

Value

String representation of a JSON document.

https://orcid.org/0000-0002-7059-6378
https://orcid.org/0000-0002-9908-3007
https://orcid.org/0000-0003-1337-7598
https://github.com/gdrplatform/gDRutils
https://gdrplatform.github.io/gDRutils/
https://github.com/gdrplatform/gDRutils/issues

.prep_cd_conc_cap_dict

.convert_norm_specific_metrics
This function change raw names of metric from long format table into
more descriptive names in the wide format table. It works for metrics:

colnames(get_header ("metrics_names"))

Description
This function change raw names of metric from long format table into more descriptive names in

the wide format table. It works for metrics: colnames(get_header ("metrics_names"))

Usage
.convert_norm_specific_metrics(x, normalization_type)

Value
object with more descriptive names

.prep_cd_conc_cap_dict
Prepare dict with min and max concentration for codilution

Description
Prepare dict with min and max concentration for codilution

Usage
.prep_cd_conc_cap_dict(
conc_assay_dt,
= as.character(get_env_identifiers(c("drug_name", "drug_name2",

group_cols =
"cellline_name"), simplify = FALSE))

Arguments
assay data in data.table format with Concentration data

conc_assay_dt

group_cols charvec with grouping column names

Value
data. table with max and min concentration for codilution

.set_invalid_fit_params 7

.set_invalid_fit_params
Set fit parameters for an invalid fit.

Description

Set fit parameters for an invalid fit.

Usage

.set_invalid_fit_params(out, norm_values)

Arguments

out Named list of fit parameters.

norm_values Numeric vector used to estimate an xc50 value.
Value

Modified named list of fit parameters.

Examples

.set_invalid_fit_params(list(), norm_values = rep(0.3, 6))

.snap_conc_to_model Snap a concentration to the nearest available model concentration

Description
Finds the value in a vector of available concentrations that is closest (on a log scale) to a user-
specified concentration. This is an internal helper function.

Usage

.snap_conc_to_model (user_conc, available_concs)

Arguments

user_conc A single numeric value for the desired concentration.
available_concs
A numeric vector of concentrations for which a model exists.

Value

A single numeric value from ’available_concs’.

addClass

.standardize_conc Standardize concentration values.

Description

Standardize concentration values.

Usage

.standardize_conc(conc)

Arguments

conc numeric vector of the concentrations

Details

If no conc are passed, NULL is returned.

Value

vector of standardized concentrations

Examples

concs <- 10 * (seq(-1, 1, 0.9))
.standardize_conc(concs)

addClass add arbitrary S3 class to an object

Description

Modify and object’s class attribute.

Usage

addClass(x, newClass)

Arguments

X an object

newClass character string; class to be added
Details

This is a simple convenience function that an item to the class attribute of an object so that it can
be dispatched to a proper S3 method. This is purely for code clarity, so that individual methods do

not clutter the definitions of higher order functions.

aggregate_assay

Value

The same object with an added S3 class.

Examples

addClass(data.table::data.table(), "someClass")

aggregate_assay Aggregate a BumpyMatrix assay by a given aggregation function.

Description

Aggregation can only be performed on nested variables.

Usage

aggregate_assay(asy, by, FUN)

Arguments
asy A BumpyMatrix object.
by Character vector of the nested fields to aggregate by.
FUN A function to use to aggregate the data.

Value

A BumpyMatrix object aggregated by FUN.

Examples

mae <- get_synthetic_data("finalMAE_small")

se <- mae[[1]]

assay <- SummarizedExperiment::assay(se)
aggregate_assay(assay, FUN = mean, by = c("Barcode”))

apply_bumpy_function Apply a function to every element of a bumpy matrix.

Description

Apply a user-specified function to every element of a bumpy matrix.

10 assert_choices

Usage

apply_bumpy_function(
se,
FUN,
req_assay_name,
out_assay_name,
parallelize = FALSE,

)
Arguments
se A SummarizedExperiment object with bumpy matrices.
FUN A function that will be applied to each element of the matrix in assay req_assay_name.

Output of the function must return a data.table.
reg_assay_name String of the assay name in the se that the FUN will act on.
out_assay_name String of the assay name that will contain the results of the applied function.
parallelize Logical indicating whether or not to parallelize the computation.

Additional args to be passed to teh FUN.

Value

The original se object with a new assay, out_assay_name.

Examples

mae <- get_synthetic_data(”finalMAE_small.qgs")
se <- mae[[1]]
FUN <- function(x) {
data.table: :data.table(Concentration = x$Concentration, CorrectedReadout = x$CorrectedReadout)
3
apply_bumpy_function(
se,
FUN = FUN,
reg_assay_name = "RawTreated”,
out_assay_name = "CorrectedReadout”

assert_choices assert choices

Description

assert choices

Usage

assert_choices(x, choices, ...)

average_biological_replicates_dt 11

Arguments
X charvec expected subset
choices charvec reference set
Additional arguments to pass to checkmate: : test_choice
Value
NULL
Examples

assert_choices("x", c("x","y"))

average_biological_replicates_dt
Average biological replicates on the data table side.

Description

Average biological replicates on the data table side.

Usage

average_biological_replicates_dt(
dt,
var,
prettified = FALSE,
fixed = TRUE,
geometric_average_fields = get_header("metric_average_fields")$geometric_mean,
fit_type_average_fields = get_header("metric_average_fields")$fit_type,
blacklisted_fields = get_header("metric_average_fields")$blacklisted,
add_sd = FALSE

)
Arguments
dt data.table with Metric data
var String representing additional metadata of replicates
prettified Flag indicating if the provided identifiers in the dt are prettified
fixed Flag indicating whether to add a fix for -Inf in the geometric mean.

geometric_average_fields
Character vector of column names in dt to take the geometric average of.
fit_type_average_fields
Character vector of column names in dt that should be treated as a column with
fit type data

blacklisted_fields
Character vector of column names in dt that should be skipped in averaging

add_sd Flag indicating whether to add standard deviation and count columns.

12 average_pvalues

Value

data.table without replicates

Examples

dt <- data.table::data.table(a = c(seg_len(10), 1),
b = c(rep("drugA”, 10), rep("drugB”, 1)))
average_biological_replicates_dt(dt, var = "a")

average_pvalues Average p-values using Fisher’s method Combines a vector of p-values
into a single representative p-value. It implements Fisher’s method,
where the test statistic is calculated as

X 2k'2=-2) _i=1"kln(p_i)

. This statistic follows a chi-squared distribution with 2k degrees of
freedom (where k is the number of p-values), from which the combined
p-value is derived.

Description

Average p-values using Fisher’s method Combines a vector of p-values into a single representative
p-value. It implements Fisher’s method, where the test statistic is calculated as

k

X3 = =2 Z In(p;)

i=1

. This statistic follows a chi-squared distribution with 2k degrees of freedom (where k is the number
of p-values), from which the combined p-value is derived.

Usage

average_pvalues(p_values)

Arguments
p_values A numeric vector of p-values. Values are expected to be between 0 and 1. The
function assumes at least one non-NA value is provided.
Value

A single, combined p-value as a numeric value.

calc_sd 13

calc_sd Calculate Standard Deviation or Return Zero

Description

This function calculates the standard deviation of a numeric vector. If the vector has a length of 1
and it is numeric, it returns 0.

Usage

calc_sd(x)

Arguments

X A numeric vector.

Value

The standard deviation of the vector if its length is greater than 1 or it is not numeric, otherwise 0.

Examples

calc_sd(c(1, 2, 3, 4, 5)) # Should return the standard deviation
calc_sd(c(1)) # Should return @

calc_sd(numeric(@)) # Should return NA

calc_sd(c("a", "b", "c")) # Should return NA

capVals Cap metric values

Description

Convenience function to apply caps to outlying metric values.

Usage

capVals(x)

Arguments

X data. table containing growth metrics extracted from a SummarizedExperiment

14

Details

The following metrics are capped at the respective values:

Value

Emax: 0-1.1

GRmax: -1 - 1.1

RV AOC within set range: over -0.1

GR AOC within set range: over of -0.1

GR50: 1e-4 to 30

1C50: 1e-4 to 30

EC50: le-4 to 30 (change O to NA beforehand)

A data table with capped values.

See Also

convert_se_assay_to_dt, oob

Examples

dt <- data.table::data.table(
“E Max™ = c(-0.1, 0, 0.5, 1.2),
“GR Max™ = c(-1.1, -1, 0.5, 1.2),

"RV AOC within set range™ = c(-0.2, -0.1, 0, 3),
“GR AOC within set range™ = c(-0.2, -0. 0, 3)
“GR50"
~1C50°

1, 0, 3

’

c(0, 1e-7, 10, 34),
c(0, 1e-7, 10, 34),

TEC50° = c(0, le-7, 10, 34),
check.names = FALSE

)
dt

dt1 <- capVals(dt)

dti1

cap_assay_infinities

cap_assay_infinities Cap infinity values (Inf, -Inf) in the assay data

Description

Cap infinity values (Inf, -Inf) in the assay data

Usage

cap_assay_infinities(
conc_assay_dt,
assay_dt,
experiment_name,
col = "xc50",
capping_fold = 5,
additional_group_cols = NULL

cap_xc50 15

Arguments

conc_assay_dt assay data in data.table format with Concentration data

assay_dt assay data in data.table format with infinity values to be capped
experiment_name
string with the name of the experiment

col string with column name to be capped in assay_dt ("xc50" by default)

capping_fold number for min and max concentration values final formulas are min / cap-
ping_fold and max * capping_fold

additional_group_cols
character vector of column names used to identify unique observations

* for single-agent experiment additional to the combination of DrugName and
CellLineName

 for combination experiment additional to the combination of DrugName,
DrugName_2 and CelllL ineName

Value

data.table without -Inf / Inf values

Examples

single-agent data
sdata <- get_synthetic_data(”finalMAE_small")
smetrics_data <- convert_se_assay_to_dt(sdata[[get_supported_experiments(”sa")]1], "Metrics"”)
saveraged_data <- convert_se_assay_to_dt(sdata[[get_supported_experiments(”sa")]1], "Averaged")
smetrics_data_capped <- cap_assay_infinities(saveraged_data,

smetrics_data,

experiment_name = "single-agent")

combination data
cdata <- get_synthetic_data("finalMAE_combo_matrix_small")
scaveraged_data <- convert_se_assay_to_dt(cdatal[[get_supported_experiments("”combo”)]], "Averaged")
scmetrics_data <- convert_se_assay_to_dt(cdatal[[get_supported_experiments(”combo”)]1], "Metrics"”)
scmetrics_data_capped <- cap_assay_infinities(scaveraged_data,

scmetrics_data,

experiment_name = "combination”)

cap_xc50 Cap XC50 value.

Description

Set IC50/GR50 value to Inf or -Inf based on upper and lower limits.

Usage

cap_xc50(xc50, max_conc, min_conc = NA, capping_fold = 5)

16 convert_colData_to_json

Arguments
xc50 Numeric value of the IC50/GR50 to cap.
max_conc Numeric value of the highest concentration in a dose series used to calculate the
xc50.
min_conc Numeric value of the lowest concentration in a dose series used to calculate the

xc50. If NA (default), using max_conc/1e5 instead.

capping_fold Integer value of the fold number to use for capping. Defaults to 5.

Details

Note: xc5@ and max_conc should share the same units. Ideally, the lower_cap should be based on
the lowest tested concentration. However, since we don’t record that, it is set 5 orders of magnitude
below the highest dose.

Value

Capped IC50/GR50 value.

Examples

cap_xc50(xc50 = 1, max_conc = 2)
cap_xc50(xc50 2, max_conc = 5, min_conc = 1)
cap_xc50(xc50 = 26, max_conc = 5, capping_fold = 5)

convert_colData_to_json
Convert colData to JSON

Description

Convert colData to JSON format for elasticsearch indexing.

Usage

convert_colData_to_json(
cdata,
identifiers,
reg_cols = c("cellline”, "cellline_name"”, "cellline_tissue”, "cellline_ref_div_time")

)

Arguments
cdata data.table of colData.
identifiers charvec with identifiers
reg_cols charvec required columns
Details

Standardizes the cdata to common schema fields and tidies formatting to be condusive to joining
with other JSON responses.

convert_combo_data_to_dt 17

Value

JSON string capturing the cdata.

Examples

cdata <- data.table::data.table(
mycellline = letters,
mycelllinename = letters,
mycelllinetissue = letters,

cellline_ref_div_time = "cellline_ref_div_time")
identifiers <- list(cellline = "mycellline”,
cellline_name = "mycelllinename”,
cellline_ref_div_time = "cellline_ref_div_time",
cellline_tissue = "mycelllinetissue”)

convert_colData_to_json(cdata, identifiers)

convert_combo_data_to_dt
convert combo assays from SummarizedExperiments to the list of
data.tables

Description

convert combo assays from SummarizedExperiments to the list of data.tables

Usage

convert_combo_data_to_dt(
se,
c_assays = get_combo_assay_names(),
normalization_type = c("RV", "GR"),
prettify = TRUE

)

Arguments
se SummarizedExperiment object with dose-response data
c_assays charvec of combo assays to be used

normalization_type
charvec of normalization_types expected in the data

prettify boolean flag indicating whether or not to prettify the colnames of the returned
data

Value

list of data.table(s) with combo data

Author(s)

Arkadiusz Gtadki <arkadiusz.gladki@contractors.roche.com>

18 convert_mae_assay_to_dt

Examples

mae <- get_synthetic_data("finalMAE_combo_matrix_small.qgs")
convert_combo_data_to_dt(mae[[1]]1)

convert_combo_field_to_assay
get combo assay names based on the field name

Description

get combo assay names based on the field name

Usage

convert_combo_field_to_assay(field)

Arguments

field String containing name of the field for which the assay name should be returned

Value

charvec

Examples

convert_combo_field_to_assay("hsa_score”)

convert_mae_assay_to_dt
Convert a MultiAssayExperiment assay to a long data.table

Description

Convert an assay within a SummarizedExperiment object in a MultiAssayExperiment to a long
data.table.

Usage

convert_mae_assay_to_dt(
mae,
assay_name,
experiment_name = NULL,
include_metadata = TRUE,
retain_nested_rownames = FALSE,
wide_structure = FALSE,
drop_masked = TRUE

convert_mae_assay_to_dt 19

Arguments
mae A MultiAssayExperiment object holding experiments with raw and/or processed
dose-response data in its assays.
assay_name String of name of the assay to transform within an experiment of the mae.

experiment_name

String of name of the experiment in mae whose assay_name should be con-
verted. Defaults to NULL to indicate to convert assay in all experiments into one
data.table object.

include_metadata

Boolean indicating whether or not to include rowData() and colData() in the
returned data.table. Defaults to TRUE.

retain_nested_rownames
Boolean indicating whether or not to retain the rownames nested within a BumpyMatrix
assay. Defaults to FALSE. If the assay_name is not of the BumpyMatrix class,
this argument’s value is ignored. If TRUE, the resulting column in the data.table
will be named as "<assay_name>_rownames”.

wide_structure Boolean indicating whether or not to transform data.table into wide format.
wide_structure = TRUE requires retain_nested_rownames = TRUE however
that will be validated in convert_se_assay_to_dt function

drop_masked Boolean indicating whether to drop masked values; TRUE by default.

Details

NOTE: to extract information about *Control’ data, simply call the function with the name of the
assay holding data on controls.

Value

data.table representation of the data in assay_name.

Author(s)

Bartosz Czech bartosz.czech @contractors.roche.com

See Also

flatten convert_se_assay_to_dt

Examples

mae <- get_synthetic_data("finalMAE_small")
convert_mae_assay_to_dt(mae, "Metrics")

mailto:bartosz.czech@contractors.roche.com

20

convert_metadata_to_json

convert_mae_to_json Create JSON document.

Description

Convert a MultiAssayExperiment object to a JSON document.

Usage

convert_mae_to_json(mae, with_experiments = TRUE)

Arguments

mae SummarizedExperiment object.
with_experiments
logical convert experiment metadata as well?

Value

String representation of a JSON document.

Examples

mae <- get_synthetic_data("finalMAE_small")
convert_mae_to_json(mae)
convert_mae_to_json(mae, with_experiments = FALSE)

convert_metadata_to_json

Convert experiment metadata to JSON format for elasticsearch index-

ing.

Description

Convert experiment metadata to JSON format for elasticsearch indexing.

Usage

convert_metadata_to_json(se)

Arguments

se SummarizedExperiment object.

Value

JSON string capturing experiment metadata.

convert_rowData_to_json 21

Examples
md <- list(title = "my awesome experiment”,
description = "description of experiment”,

sources = list(list(name = "GeneData_Screener”, id = "QCS-12345")))
se <- SummarizedExperiment::SummarizedExperiment(metadata = md)
convert_metadata_to_json(se)

convert_rowData_to_json
Convert rowData to JSON

Description

Convert rowData to JSON format for elasticsearch indexing.

Usage
convert_rowData_to_json(
rdata,
identifiers,
req_cols = c("drug”, "drug_name”, "drug_moa”, "duration”)
)
Arguments
rdata data.table of rowData.
identifiers charvec with identifiers
req_cols charvec required columns
Details

Standardizes the rdata to common schema fields and tidies formatting to be condusive to joining
with other JSON responses.

Value

JSON string capturing the rdata.

Examples

rdata <- data.table::data.table(
mydrug = letters,
mydrugname = letters,
mydrugmoa = letters,
Duration = 1)
identifiers <- list(drug = "mydrug"”, drug_name = "mydrugname”, drug_moa = "mydrugmoa",
duration = "Duration”)
convert_rowData_to_json(rdata, identifiers)

22 convert_se_assay_to_custom_dt

convert_se_assay_to_custom_dt

Convert a SummarizedExperiment assay to a long data.table and con-
duct some post processing steps

Description

Convert an assay within a SummarizedExperiment object to a long data.table. Then conduct some
post processing steps.

Usage

convert_se_assay_to_custom_dt(
se,
assay_name,
output_table = NULL,
cap_values = FALSE

)
Arguments
se A SummarizedExperiment object holding raw and/or processed dose-response
data in its assays.
assay_name String of name of the assay to transform within the se.

output_table String of type name of the output data.table.

cap_values Logical indicating whether to apply capping (via capVals) for "Metrics" output.
Default is FALSE.

Details
Current strategy is per-assay specific.

1. combo assays: conversion to data.table only (with wide_structure = FALSE)

2. ’Metrics’ assay can be converted to three types of outputs:

* Metrics_initial (conversion to data.table only, with wide_structure = FALSE)
* Metrics_raw: same as Metrics_initial followed by:

— fix for ’EC50° and ’Metrics_rownames’
— flatten
— prettifying and dropping excess variables

* Metrics (same as Metrics_raw + cap_values if cap_values = TRUE)
1. ’Normalization” and ’Averaged’ assay:

e conversion to data.table (with wide_structure = TRUE)
* prettifying and dropping excess variables
NOTE: to extract information about *Control’ data, simply call the function with the name of the

assay holding data on controls. To extract the reference data in the same format as ’Averaged’ use
convert_se_ref_assay_to_dt.

convert_se_assay_to_dt 23

Value

data.table representation of the data in assay_name with added information from colData.

See Also

convert_se_assay_to_dt

Examples

mae <- get_synthetic_data(”"finalMAE_small")

se <- mae[[1]]

convert_se_assay_to_custom_dt(se, "Metrics”)

convert_se_assay_to_custom_dt(se, "Metrics”, output_table = "Metrics_raw")
convert_se_assay_to_custom_dt(se, "Metrics”, output_table = "Metrics_initial")
convert_se_assay_to_custom_dt(se, "Averaged")
convert_se_assay_to_custom_dt(se, "Metrics”, cap_values = TRUE)

convert_se_assay_to_dt
Convert a SummarizedExperiment assay to a long data.table

Description

Convert an assay within a SummarizedExperiment object to a long data.table.

Usage

convert_se_assay_to_dt(
se,
assay_name,
include_metadata = TRUE,
retain_nested_rownames = FALSE,
wide_structure = FALSE,
unify_metadata = FALSE,
drop_masked = TRUE

)
Arguments
se A SummarizedExperiment object holding raw and/or processed dose-response
data in its assays.
assay_name String of name of the assay to transform within the se.

include_metadata
Boolean indicating whether or not to include rowData(se) and colData(se) in
the returned data.table. Defaults to TRUE.
retain_nested_rownames
Boolean indicating whether or not to retain the rownames nested within a BumpyMatrix
assay. Defaults to FALSE. If the assay_name is not of the BumpyMatrix class,
this argument’s value is ignored. If TRUE, the resulting column in the data.table
will be named as "<assay_name>_rownames”.

24 convert_se_to_json

wide_structure Boolean indicating whether or not to transform data.table into wide format.
wide_structure = TRUE requires retain_nested_rownames = TRUE.

unify_metadata Boolean indicating whether to unify DrugName and CellLineName in cases
where DrugNames and CellLineNames are shared by more than one Gnumber
and/or clid within the experiment.

drop_masked Boolean indicating whether to drop masked values; TRUE by default.

Details

NOTE: to extract information about *Control’ data, simply call the function with the name of the
assay holding data on controls. To extract the reference data in to same format as ’Averaged’ use
convert_se_ref_assay_to_dt.

Value

data.table representation of the data in assay_name.

See Also

flatten

Examples

mae <- get_synthetic_data("finalMAE_small")
se <- mae[[1]]
convert_se_assay_to_dt(se, "Metrics")

convert_se_to_json Convert a SummarizedExperiment object to a JSON document.

Description

Convert a SummarizedExperiment object to a JSON document.

Usage

convert_se_to_json(se)

Arguments

se SummarizedExperiment object.

Value

String representation of a JSON document.

define_matrix_grid_positions 25

Examples
md <- list(title = "my awesome experiment”,
description = "description of experiment”,

source = list(name = "GeneData_Screener"”, id = "QCS-12345"))
rdata <- data.table::data.table(
mydrug = letters,
mydrugname = letters,
mydrugmoa = letters,
Duration = 1)
cdata <- data.table::data.table(mycellline = letters, mycelllinename = letters,
mycelllinetissue = letters, cellline_ref_div_time = letters)
identifiers <- list(cellline = "mycellline”,
cellline_name = "mycelllinename”,
cellline_tissue = "mycelllinetissue”,
cellline_ref_div_time = "cellline_ref_div_time",
drug = "mydrug”,
drug_name = "mydrugname",
drug_moa = "mydrugmoa”,
duration = "Duration”)
se <- SummarizedExperiment::SummarizedExperiment(rowData = rdata,
colData = cdata)

se <- set_SE_experiment_metadata(se, md)
se <- set_SE_identifiers(se, identifiers)
convert_se_to_json(se)

define_matrix_grid_positions
Define matrix grid positions

Description

Define matrix grid positions

Usage

define_matrix_grid_positions(concl, conc2)

Arguments

concl drug_1 concentration

conc2 drug_2 concentration

Details
drug_1 is diluted along the rows as the y-axis and drug_2 is diluted along the columns and will be
the x-axis.

Value

list with axis grid positions

26 demote_fields

Examples

cl_name <- "cellline_BC"
drugl_name <- "drug_001"
drug2_name <- "drug_026"

se <- get_synthetic_data(”combo_matrix_small”)[["combination”]]
dt_average <- convert_se_assay_to_dt(se, "Averaged”)[normalization_type == "GR"]

1s_axes <- define_matrix_grid_positions(
dt_average[["Concentration”]], dt_average[["Concentration_2"11])

demote_fields Demote a metadata field in the rowData or colData of a
SummarizedExperiment object to a nested field of a BumpyMatrix
assay.

Description

Demote a metadata field in the rowData or colData of a SummarizedExperiment object to a nested
field of a BumpyMatrix assay.

Usage

demote_fields(se, fields)

Arguments

se A SummarizedExperiment object.

fields Character vector of metadata fields to demote as nested columns.
Details

Revert this operation using promote_fields.

Value

A SummarizedExperiment object with new dimensions resulting from demoting given fields to
nested columns.

See Also

promote_fields

Examples

mae <- get_synthetic_data("finalMAE_small")
se <- mae[[1]1]

se <- promote_fields(se, "ReadoutValue"”, 2)
demote_fields(se, "ReadoutValue")

df_to_bm_assay 27

df_to_bm_assay df _to_bm_assay

Description

Convert data.table with dose-response data into a BumpyMatrix assay.

Usage
df_to_bm_assay(data, discard_keys = NULL)

Arguments

data data.table with drug-response data

discard_keys avector of keys that should be discarded

Details

The ’assay’ is simply a BumpyMatrix object with rownames being the treatment ids, colnames
being the ids of the cell lines and values with dose-response data for given cell lines under given
conditions.

Value

BumpyMatrix object

Examples

df_to_bm_assay(data.table::data.table(Gnumber = 2, clid = "A"))

extend_normalization_type_name
extend abbreviated normalization type

Description

extend abbreviated normalization type

Usage

extend_normalization_type_name(x)

Arguments

X string with normalization type

Value

string

28

Examples

fit_curves

extend_normalization_type_name("GR")

fit_curves

Fit curves

Description

Fit GR and RV curves from a data.table.

Usage

fit_curves(
df_,

series_identifiers,

e_0 =1,
GR_0O =1,

n_point_cutoff = 4,
range_conc = c(0.005, 5),

force_fit =

FALSE,

pcutoff = 0.05,

cap = 0.1,

normalization_type = c("GR", "RV")

Arguments

df_

data.table containing data to fit. See details.

series_identifiers

e_0
GR_0

n_point_cutoff

range_conc

force_fit

pcutoff

cap

character vector of the column names in data. table whose combination repre-
sents a unique series for which to fit curves.

numeric value representing the x_@ value for the RV curve. Defaults to 1.
numeric value representing the x_@ value for the GR curve. Defaults to 1.

integer of how many points should be considered the minimum required to try
to fit a curve. Defaults to 4.

numeric vector of length 2 indicating the lower and upper concentration ranges.
Defaults to c(5e-3, 5). See details.

boolean indicating whether or not to force a constant fit. Defaults to FALSE.

numeric of pvalue significance threshold above or equal to which to use a con-
stant fit. Defaults to 0. @5.

numeric value capping norm_values to stay below (x_0 + cap). Defaultsto 0. 1.

normalization_type

character vector of types of curves to fit. Defaults to c("GR", "RV").

flatten 29

Details
The df _ expects the following columns:
* RelativeViability normalized relative viability values (if normalization_type includes "RV")

¢ GRvalue normalized GR values (if normalization_type includes "GR")

The range_conc is used to calculate the x_AOC_range statistic. The purpose of this statistic is to
enable comparison across different experiments with slightly different concentration ranges.

Value

data.table of fit parameters as specified by the normalization_type.

Examples

df_ <- data.table::data.table(Concentration = c(0.001, 0.00316227766016838,
0.01, 0.0316227766016838),

x_std = c(0.1, 0.1, 0.1, 0.1), normalization_types = c("RV", "RV", "RV", "RV"),
X = ¢(0.9999964000144, ©.999964001439942, ©0.999640143942423, ©.996414342629482))

fit_curves(df_, "Concentration”, normalization_type = "RV")
flatten Flatten a table
Description

Flatten a stacked table into a wide format.

Usage
flatten(tbl, groups, wide_cols, sep = "_")
Arguments
tbl table to flatten.
groups character vector of column names representing uniquifying groups in expansion.
wide_cols character vector of column names to flatten.
sep string representing separator between wide_cols columns, used in column re-
naming. Defaults to "_".
Details

flattened columns will be named with original column names prefixed by wide_cols columns,
concatenated together and separated by sep.

A common use case for this function is when a flattened version of the "Metrics” assay is desired.

Value

table of flattened data as defined by wide_cols.

30

See Also

convert_se_assay_to_dt

Examples

n <-4

m<-5

grid <- expand.grid(normalization_type = c("GR", "RV"),
source = c("GDS", "GDR"))

repgrid <- data.table::rbindlist(rep(list(grid), m))

repgrid$wide <- seq(m * n)

repgrid$id <- rep(LETTERS[1:m], each = n)

groups <- colnames(grid)
wide_cols <- c("wide")

flatten(repgrid, groups = groups, wide_cols = wide_cols)

gen_synthetic_data

gen_synthetic_data gen_synthetic_data

Description

Function for generating local synthetic data used for unit tests in modules

Usage

gen_synthetic_data(m = 1, n = 5)

Arguments

m number of drugs

n number of records
Value

list with drugs, cell_lines, raw_data and assay_data

Examples

gen_synthetic_data()

geometric_mean 31

geometric_mean Geometric mean

Description

Auxiliary function for calculating geometric mean with possibility to handle -Inf

Usage

geometric_mean(x, fixed = TRUE, maxlogl@Concentration = 1)

Arguments
X numeric vector
fixed flag should be add fix for -Inf

maxlogl@Concentration
numeric value needed to calculate minimal value

Value

numeric vector

Examples

geometric_mean(c(2, 8))

get_additional_variables
Identify and return additional variables in list of dt

Description

Identify and return additional variables in list of dt

Usage

get_additional_variables(dt_list, unique = FALSE, prettified = FALSE)

Arguments
dt_list list of data.table or data.table containing additional variables
unique logical flag indicating if all variables should be returned or only those containing
more than one unique value
prettified Flag indicating if the provided identifiers in the dt are prettified
Value

vector of variable names with additional variables

32

Examples

dt <- data.table::data.table(
Gnumber = seq_len(10),
Concentration = runif(10),
Ligand = c(rep(@.5, 5), rep(@, 5))

)

get_additional_variables(dt)

get_assay_names

get_assay_dt_duplicated_rows
Helper function to find duplicated rows in assay data

Description

Helper function to find duplicated rows in assay data

Usage

get_assay_dt_duplicated_rows(dt, output = "index")

Arguments

dt data.table

output string with the output format to be returned
Value

integer vector or data.table with duplicated rows

Examples

sdata <- get_synthetic_data("finalMAE_small")

smetrics_data <- convert_se_assay_to_dt(sdata[[1]], "Metrics")
get_assay_dt_duplicated_rows(smetrics_data, output = "data”)
get_assay_dt_duplicated_rows(smetrics_data)

get_assay_names get assay names of the given se/dataset fetch the data from the se if pro-
vided as metadata use predefined values from get_env_assay_names

otherwise

Description

get assay names of the given se/dataset fetch the data from the se if provided as metadata use

predefined values from get_env_assay_names otherwise

Usage

get_assay_names(se = NULL, ...)

get_assay_req_uniq_cols

Arguments
se SummarizedExperiment or NULL
Additional arguments to pass to get_env_assay_names.
Value
charvec
Author(s)

Arkadiusz Gtadki <arkadiusz.gladki@contractors.roche.com>

Examples

get_assay_names()

33

get_assay_req_uniqg_cols
get columns in the assay data required to have unique data

Description

get columns in the assay data required to have unique (non-duplicated) data

Usage

get_assay_reqg_uniqg_cols(dt)

Arguments

dt data.table with assay data

Value

charvec with columns required to have unique data

Examples

sdata <- get_synthetic_data("finalMAE_small")
smetrics_data <- convert_se_assay_to_dt(sdata[[1]], "Metrics")
get_assay_req_uniqg_cols(smetrics_data)

34 get_combo_base_assay_names

get_combo_assay_names get names of combo assays

Description

get names of combo assays

Usage
get_combo_assay_names(se = NULL, ...)
Arguments
se SummarizedExperiment or NULL
Additional arguments to pass to get_assay_names.
Value

charvec of combo assay names.

Author(s)

Arkadiusz Gtadki <arkadiusz.gladki@contractors.roche.com>

Examples

get_combo_assay_names()

get_combo_base_assay_names
get names of combo base assays

Description

get names of combo base assays

Usage
get_combo_base_assay_names(se = NULL, ...)
Arguments
se SummarizedExperiment or NULL
Additional arguments to pass to get_combo_assay_names.
Value

charvec

get_combo_excess_field_names

Author(s)

Arkadiusz Gtadki <arkadiusz.gladki@contractors.roche.com>

Examples

get_combo_base_assay_names()

get_combo_excess_field_names
get names of combo excess fields

Description

get names of combo excess fields

Usage

get_combo_excess_field_names()

Value

charvec

Examples

get_combo_excess_field_names()

get_combo_score_assay_names
get names of combo score assays

Description

get names of combo score assays

Usage
get_combo_score_assay_names(se = NULL, ...)
Arguments
se SummarizedExperiment or NULL
Additional arguments to pass to get_combo_assay_names.
Value

charvec

36

Author(s)

Arkadiusz Gtadki <arkadiusz.gladki@contractors.roche.com>

Examples

get_combo_score_assay_names()

get_default_identifiers

get_combo_score_field_names
get names of combo score fields

Description

get names of combo score fields

Usage

get_combo_score_field_names()

Value

charvec

Examples

get_combo_score_assay_names()

get_default_identifiers

Get gDR default identifiers required for downstream analysis.

Description

Get gDR default identifiers required for downstream analysis.

Usage

get_default_identifiers()

Value

charvec

Examples

get_default_identifiers()

get_duplicated_rows 37

get_duplicated_rows Helper function to find duplicated rows

Description

Helper function to find duplicated rows

Usage
get_duplicated_rows(x, col_names = NULL, output = "index")
Arguments
X DataFrame or data.table
col_names character vector, columns in which duplication are searched for
output string with the output format to be returned - one of "index" (index of duplicates)
or "data" (subset of input data with duplicates)
Value

integer vector or data.table with duplicated rows

Examples

dt <- data.table::data.table(a = c(1, 2, 3), b = c(3, 2, 2))
get_duplicated_rows(dt, "b")
get_duplicated_rows(dt, "b", output = "data")

get_env_assay_names get default assay names for the specified filters, i.e. set of assay types,
assay groups and assay data types

Description

get default assay names for the specified filters, i.e. set of assay types, assay groups and assay data
types

Usage
get_env_assay_names(
type = NULL,
group = NULL,

data_type = NULL,
prettify = FALSE,
simplify = TRUE

38 get_env_var

Arguments
type charvec of assay types
group charvec of assay groups
data_type charvec assay of data types
prettify logical flag, prettify the assay name?
simplify logical flag, simplify the output? will return single string instead of named vec-
tor with single element useful when function is expected to return single ele-
ment/assay only
Value
charvec
Author(s)

Arkadiusz Gtadki <arkadiusz.gladki@contractors.roche.com>

Examples

get_env_assay_names()

get_env_var safe wrapper of Sys.getenv()

Description

So far the helper is needed to handle env vars containing : for which the backslash is automatically
added in some contexts and R could not get the original value for these env vars.

Usage
get_env_var(x, ...)
Arguments
X string with the name of the environmental variable
additional params for Sys.getenev
Value

sanitized value of the env variable

Examples

get_env_var("HOME")

get_expect_one_identifiers 39

get_expect_one_identifiers
Get identifiers that expect only one value for each identifier.

Description

Get identifiers that expect only one value for each identifier.

Usage

get_expect_one_identifiers()

Value

charvec

Examples

get_expect_one_identifiers()

get_experiment_groups get_experiment_groups

Description

get experiment groups

Usage

get_experiment_groups(type = NULL)

Arguments

type String indicating the name of an assay group. Defaults to all experiment groups.

Value

list with experiment groups or string (if type not NULL)

Author(s)

Arkadiusz Gladki arkadiusz.gladki @contractors.roche.com

Examples

get_experiment_groups()

mailto:arkadiusz.gladki@contractors.roche.com

40 get_identifiers_dt

get_gDR_session_info get gDR package and their version installed in the environment

Description

get gDR package and their version installed in the environment

Usage

get_gDR_session_info(pattern = "~gDR")

Arguments

pattern string with the pattern to grep R packages from the list of installed packages

Value

data.table with gDR packages and their versions

Examples

get_gDR_session_info()

get_identifiers_dt Get descriptions for identifiers

Description

Get descriptions for identifiers

Usage
get_identifiers_dt(k = NULL, get_description = FALSE, get_example = FALSE)

Arguments

k identifier key, string
get_description
return descriptions only, boolean

get_example return examples only, boolean

Value

named list

Examples

get_identifiers_dt()

get_idfs_synonyms

get_idfs_synonyms Get gDR synonyms for the identifiers

Description

Get gDR synonyms for the identifiers

Usage

get_idfs_synonyms()

Value

charvec

Examples

get_idfs_synonyms()

get_isobologram_columns
Get isobologram column names

Description

Get isobologram column names

Usage

get_isobologram_columns(k = NULL, prettify = TRUE)

Arguments

k key

prettify change to upper case and add underscore, iso_level —> Iso_Level
Value

character vector of isobologram column names for combination data

Examples

get_isobologram_columns()
get_isobologram_columns("”iso_level”, prettify = TRUE)

42

get_non_empty_assays

get_MAE_identifiers get_MAE_identifiers

Description

get the identifiers of all SE’s in the MAE

Usage

get_MAE_identifiers(mae)

Arguments

mae MultiAssayExperiment

Value

named list with identifiers for each SE

Examples

mae <- get_synthetic_data(”finalMAE_small.qgs")
get_MAE_identifiers(mae)

get_non_empty_assays get_non_empty_assays

Description

get non empty assays

Usage

get_non_empty_assays(mae)

Arguments

mae MultiAssayExperiment object

Value

charvec with non-empty experiments

Author(s)

Arkadiusz Gladki arkadiusz.gladki @contractors.roche.com

Examples

mae <- get_synthetic_data(”finalMAE_small.qgs")
get_non_empty_assays(mae)

mailto:arkadiusz.gladki@contractors.roche.com

get_optional_coldata_fields 43

get_optional_coldata_fields
get optional colData fields

Description

get optional colData fields

Usage

get_optional_coldata_fields(se)

Arguments

se a SummarizedExperiment object with drug-response data generate by gDR pipeline

Value

a charvec containing the names of the optional identifiers in the SE colData

get_optional_rowdata_fields
get optional rowData fields

Description

get optional rowData fields

Usage

get_optional_rowdata_fields(se)

Arguments

se a SummarizedExperiment object with drug-response data generate by gDR pipeline

Value

a charvec containing the names of the optional identifiers in the SE rowData

44 get_settings_from_json

get_required_identifiers
Get identifiers required for downstream analysis.

Description

Get identifiers required for downstream analysis.

Usage

get_required_identifiers()

Value

charvec

Examples

get_required_identifiers()

get_settings_from_json

Get settings from JSON file In most common scenario the settings are
stored in JSON file to avoid hardcoding

Description

Get settings from JSON file In most common scenario the settings are stored in JSON file to avoid
hardcoding

Usage

get_settings_from_json(

s = NULL,

json_path = system.file(package = "gDRutils”, "settings.json")
)

Arguments
s charvec with setting entry/entries
json_path string with the path to the JSON file
Value

value/values for entry/entries from JSON file

get_supported_experiments

Examples

if (!nchar(system.file(package="gDRutils"))) {
get_settings_from_json()

}

45

get_supported_experiments
get_supported_experiments

Description

get supported experiments

Usage

get_supported_experiments(type = NULL)

Arguments

type String indicating the type of experiment

Value

charvec with supported experiment name(s)

Author(s)

Arkadiusz Gladki arkadiusz.gladki@contractors.roche.com

Examples

get_supported_experiments()

get_synthetic_data Get synthetic data from gDRtestData package

Description

Get synthetic data from gDRtestData package

Usage

get_synthetic_data(qgs)

Arguments

gs gs filename

mailto:arkadiusz.gladki@contractors.roche.com

46

Value

loaded data

Examples

get_synthetic_data("finalMAE_small.qgs")

get_testdata_codilution

get_testdata get_testdata

Description

Function to obtain data from gDRtestData and prepare for unit tests

Usage

get_testdata()

Value

list with drugs, cell_lines, raw_data and assay_data

Examples

get_testdata()

get_testdata_codilution
get_testdata_codilution

Description

Function to obtain data from gDRtestData and prepare for unit tests

Usage

get_testdata_codilution()

Value

list with drugs, cell_lines, raw_data and assay_data

Examples

get_testdata_codilution()

get_testdata_combo

47

get_testdata_combo get_testdata_combo

Description

Function to obtain data from gDRtestData and prepare for unit tests

Usage

get_testdata_combo()

Value

list with drugs, cell_lines, raw_data and assay_data

Examples

get_testdata_combo()

has_assay_dt_duplicated_rows
check if assay data contains duplicated data

Description

An auxiliary function that checks for duplicates in the assay data

Usage

has_assay_dt_duplicated_rows(dt)

Arguments

dt data.table with assay data

Value

logical flag indicating if a dt contains duplicated rows or not

Examples

sdata <- get_synthetic_data(”finalMAE_small")
smetrics_data <- convert_se_assay_to_dt(sdata[[1]], "Metrics")
has_assay_dt_duplicated_rows(smetrics_data)

48 has_single_codrug_data

has_dt_duplicated_rows
check if data.table contains duplicated data

Description

An auxiliary function that checks for duplicates in the data.table (or its subset)

Usage

has_dt_duplicated_rows(dt, col_names = NULL)

Arguments

dt data.table

col_names charvec with columns to be used for subsetting
Value

logical flag indicating if a dt contains duplicated rows or not

Examples

dt <- data.table::data.table(a = c(1, 2, 3), b = c(3, 2, 2))
has_dt_duplicated_rows(dt, "b")

has_single_codrug_data
Has Single Codrug Data

Description

Has Single Codrug Data

Usage
has_single_codrug_data(
cols,
prettify_identifiers = TRUE,
codrug_identifiers = c("drug_name2"”, "concentration2")
)
Arguments
cols character vector with the columns of the input data

prettify_identifiers

logical flag specifying if identifiers are expected to be prettified
codrug_identifiers

character vector with identifiers for the codrug columns

has_valid_codrug_data

Value

logical flag

Examples

has_single_codrug_data("Drug Name")
has_single_codrug_data(c("Drug Name"”, "Cell Lines"))
has_single_codrug_data(c("Drug Name 2", "Concentration 2"))
has_single_codrug_data(
get_prettified_identifiers(
c("concentration2”, "drug_name2"),
simplify = FALSE
)
)

has_valid_codrug_data Has Valid Codrug Data

Description
Has Valid Codrug Data
Usage
has_valid_codrug_data(
data,
prettify_identifiers = TRUE,
codrug_name_identifier = "drug_name2",
codrug_conc_identifier = "concentration2”
)
Arguments
data data.table with input data

prettify_identifiers
logical flag specifying if identifiers are expected to be prettified

codrug_name_identifier
string with the identifiers for the codrug drug_name column

codrug_conc_identifier
string with the identifiers for the codrug concentration column

Value

logical flag

50

Examples

dt <-
data.table: :data.table(
"Drug Name"” = letters[seqg_len(3)],

"Concentration” = seq_len(3),
"Drug Name 2" = letters[4:6],
"Concentration 2" = 4:6

)
has_valid_codrug_data(dt)

dt$~Concentration 27 <- NULL
has_valid_codrug_data(dt)

headers

headers Get or reset headers for one or all header field(s) respectively

Description

Get the expected header(s) for one field or reset all header fields

Usage

get_header(k = NULL)

Arguments

k string of field (data type) to return headers for

Details

If get_header is called with no values, the entire available header list is returned.

Value

For get_header a character vector of headers for field k.

Examples

get_header(k = NULL)
get_header("manifest”)

identifiers 51

identifiers Get, set, or reset identifiers for one or all identifier field(s)

Description

Get, set, or reset the expected identifier(s) for one or all identifier field(s). Identifiers are used by
the gDR processing functions to identify which columns in a data.table correspond to certain
expected fields. Functions of the family *et_identifier will look for identifiers from the environ-
ment while functions of the family xet_SE_identifiers will look for identifiers in the metadata
slot of a SummarizedExperiment object. See details for expected identifiers and their definitions.

Usage

get_env_identifiers(k = NULL, simplify = TRUE)

get_prettified_identifiers(k = NULL, simplify = TRUE)

set_env_identifier(k, v)

reset_env_identifiers()

Arguments

k String corresponding to identifier name.

simplify Boolean indicating whether output should be simplified.

v Character vector corresponding to the value for given identifier k.
Details

Identifiers supported by the gDR suite include:

"barcode": String of column name containing barcode metadata

"cellline": String of column name containing unique, machine-readable cell line identifiers
"cellline_name": String of column name containing human-friendly cell line names
"cellline_tissue": String of column name containing metadata on cell line tissue type

"cellline_ref_div_time": String of column name containing reference division time for cell
lines

"cellline_parental_identifier": String of column name containing unique, machine-readable
parental cell line identifiers. Used in the case of derived or engineered cell lines.

"drug": String of column name containing unique, machine-readable drug identifiers
"drug_name": String of column name containing human-friendly drug names
"drug_moa": String of column name containing metadata for drug mode of action

"duration": String of column name containing metadata on duration that cells were treated (in
hours)

"template": String of column name containing template metadata
"untreated_tag": Character vector of entries that identify control, untreated wells

"well_position": Character vector of column names containing metadata on well positions on
a plate

52 identify_unique_se_metadata_fields

Value

For any setting or resetting functionality, a NULL invisibly. For get_env_identifiers acharacter
vector of identifiers for field k. For functions called with no arguments, the entire available identifier
list is returned.

list or charvec depends on unify param
list or charvec depends on unify param
NULL
NULL

Examples

get_env_identifiers("duration”) # "Duration”

identify_unique_se_metadata_fields

Identify unique metadata fields from a @ list of
SummarizedExperiments

Description

Identify unique metadata fields from a list of SummarizedExperiments

Usage

identify_unique_se_metadata_fields(SElist)

Arguments

SElist named list of SummarizedExperiments

Value

character vector of unique names of metadata

Examples

mae <- get_synthetic_data("finalMAE_small")
se <- mae[[1]1]
SElist <- list(

se,

se
)
identify_unique_se_metadata_fields(SElist)

is_any_exp_empty

is_any_exp_empty is_any_exp_empty

Description

check if any experiment is empty

Usage

is_any_exp_empty(mae)

Arguments

mae MultiAssayExperiment object

Value

logical

Author(s)

Arkadiusz Gladki arkadiusz.gladki @contractors.roche.com

Examples

mae <- get_synthetic_data(”finalMAE_small.qgs")
is_any_exp_empty(mae)

is_combo_data Checks if se is combo dataset.

Description

Checks if se is combo dataset.

Usage

is_combo_data(se)

Arguments

se SummarizedExperiment

Value

logical

mailto:arkadiusz.gladki@contractors.roche.com

54

Examples

se <- get_synthetic_data("combo_matrix”)[[1]]
is_combo_data(se)

se <- get_synthetic_data("combo_matrix")[[2]]
is_combo_data(se)

se <- get_synthetic_data("small")[[1]]
is_combo_data(se)

is_mae_empty

is_exp_empty is_exp_empty

Description

check if experiment (SE) is empty

Usage

is_exp_empty (exp)

Arguments

exp SummarizedExperiment object.

Value

logical

Author(s)

Arkadiusz Gladki arkadiusz.gladki @contractors.roche.com

Examples

mae <- get_synthetic_data(”finalMAE_small.qgs")
se <- mae[[1]]
is_exp_empty(se)

is_mae_empty is_mae_empty

Description

check if all mae experiments are empty

Usage

is_mae_empty(mae)

mailto:arkadiusz.gladki@contractors.roche.com

logisticFit 55

Arguments

mae MultiAssayExperiment object

Value

logical

Author(s)

Arkadiusz Gladki arkadiusz.gladki @contractors.roche.com

Examples

mae <- get_synthetic_data(”finalMAE_small.qgs")
is_mae_empty(mae)

logisticFit Logistic fit

Description

Fit a logistic curve to drug response data.

Usage

logisticFit(
concs,
norm_values,
std_norm_values = NA,

X_0 =1,
priors = NULL,
lower = NULL,

range_conc = c(0.005, 5),
force_fit = FALSE,
pcutoff = 0.05,

cap = 0.1,

n_point_cutoff = 4,
capping_fold = 5
)
Arguments
concs concentrations that have not been transformed into log space.
norm_values normalized response values (Untreated = 1).

std_norm_values
std of values.

X_0 upper limit. Defaults to 1. For co-treatments, this value should be set to NA.

priors numeric vector containing starting values for all. mean parameters in the model.
Overrules any self starter function.

mailto:arkadiusz.gladki@contractors.roche.com

56 logisticFit

lower numeric vector of lower limits for all parameters in a 4-param model.

range_conc range of concentration for calculating AOC_range.

force_fit boolean indicating whether or not to force a parameter-based fit.

pcutoff numeric of pvalue significance threshold above or equal to which to use a con-
stant fit.

cap numeric value capping norm_values to stay below (x_@ + cap).

n_point_cutoff integer indicating number of unique concentrations required to fit curve.

capping_fold Integer value of the fold number to use for capping IC50/GR50. Default is 5.

Details

Implementation of the genedata approach for curve fit: https://screener.genedata.com/documentation/display/DOC21/Bu:
Rules-for-Dose-Response-Curve-Fitting,-Model-Selection,-and-Fit- Validity.html #nolint

The output parameter names correspond to the following definitions:

x_mean The mean of a given dose-response metric
x_AOC _range The range of the area over the curve

x_AOC The area over the GR curve or, respectively, under the relative cell count curve, averaged
over the range of concentration values

xc50 The concentration at which the effect reaches a value of 0.5 based on interpolation of the
fitted curve

x_max The maximum effect of the drug
ec50 The drug concentration at half-maximal effect

x_inf The asymptotic value of the sigmoidal fit to the dose-response data as concentration goes to
infinity

x_0 The asymptotic metric value corresponding to a concentration of O for the primary drug
h The hill coefficient of the fitted curve, which reflects how steep the dose-response curve is
r2 The goodness of the fit

x_sd_avg The standard deviation of GR/IC

fit_type This will be given by one of the following:

* "DRC4pHillFitModel" Successfully fit with a 4-parameter model

* "DRC3pHillFitModelFixS0" Successfully fit with a 3-parameter model
* "DRCConstantFitResult" Successfully fit with a constant fit

* "DRCTooFewPointsToFit" Not enough points to run a fit

» "DRClnvalidFitResult" Fit was attempted but failed

maxlogl0Concentration The highest log10 concentration

N_conc Number of unique concentrations

Value

data.table with metrics and fit parameters.

loop 57

Examples

logisticFit(
c(0.001, 0.00316227766016838, 0.01, 0.0316227766016838),
c(0.9999964000144, 0.999964001439942, 0.999640143942423, 0.996414342629482),

rep(0.1, 4),
priors = c(2, 0.4, 1, 0.00658113883008419)
)
loop Conditional lapply or bplapply with optional batch processing.
Description

Conditional lapply or bplapply with optional batch processing.

Usage

loop(
X,
FUN,
parallelize = TRUE,
use_batch = as.logical(Sys.getenv("GDR_USE_BATCH", "FALSE")),
temp_dir = Sys.getenv("GDR_TEMP_DIR", tempdir()),
batch_size = as.numeric(Sys.getenv("GDR_BATCH_SIZE", 100)),

)
Arguments
X Vector (atomic or list) or an expression object. Other objects (including classed
objects) will be coerced by as.list
FUN A user-defined function to apply to each element of x.
parallelize Logical indicating whether or not to parallelize the computation. Defaults to
TRUE.
use_batch Logical indicating whether to use batch processing to save intermediate results.
Defaults to FALSE.
temp_dir Character string specifying the directory where batch results are saved. Defaults
to tempdir ().
batch_size Integer specifying the number of elements to process in each batch during batch
mode. Defaults to 100.
Optional arguments passed to bplapply if parallelize == TRUE, else to lapply.
Details

The function operates in two modes:

1. Regular mode: Directly applies FUN to the elements using lapply or bplapply.

2. Batch mode: Saves results in batches to disk, allowing computation to resume from the last
saved step. Batch mode is activated by setting use_batch to TRUE.

58 MAEpply

Value
List containing output of FUN applied to every element in x. When batch processing is enabled,
results are saved incrementally and merged at the end of processing.

Examples

Regular processing
loop(list(1, 2, 3), function(x) x*2, parallelize = FALSE, use_batch = FALSE)

Batch processing
loop(1:10, function(x) x*2, parallelize = TRUE, use_batch = TRUE)

MAEpply Lapply through all the experiments in MultiAssayExperiment object

Description

Lapply through all the experiments in MultiAssayExperiment object

Usage
MAEpply(mae, FUN, unify = FALSE, ...)
Arguments
mae MultiAssayExperiment object
FUN function that should be applied on each experiment of MultiAssayExperiment
object
unify logical indicating if the output should be a unlisted object of unique values
across all the experiments
Additional args to be passed to teh FUN.
Value

list or vector depends on unify param

Author(s)

Bartosz Czech bartosz.czech @contractors.roche.com

Examples

mae <- get_synthetic_data(”finalMAE_small.qgs")
MAEpply(mae, SummarizedExperiment::assayNames)

mailto:bartosz.czech@contractors.roche.com

map_conc_to_standardized_conc 59

map_conc_to_standardized_conc
Create a mapping of concentrations to standardized concentrations.

Description

Create a mapping of concentrations to standardized concentrations.

Usage

map_conc_to_standardized_conc(concl, conc2)

Arguments
concl numeric vector of the concentrations for drug 1.
conc? numeric vector of the concentrations for drug 2.
Details

The concentrations are standardized in that they will contain regularly spaced dilutions and close
values will be rounded.

Value

data.table of 2 columns named "concs” and "rconcs” containing the original concentrations and
their closest matched standardized concentrations respectively. and their new standardized concen-
trations.

Examples

ratio <- 0.5
concl <- c(0, 10 * (seq(-3, 1, ratio)))

shorter_range <- conc1[-1]
noise <- runif(length(shorter_range), 1e-12, le-11)
conc2 <- shorter_range + noise

map_conc_to_standardized_conc(concl, conc2)

mcolData mcolData

Description

get colData of all experiments

Usage

mcolData(mae)

60

Arguments

mae MultiAssayExperiment object

Value

data.table with all-experiments colData

Author(s)

Arkadiusz Gladki arkadiusz.gladki @contractors.roche.com

Examples

mae <- get_synthetic_data(”finalMAE_small.qgs")
mcolData(mae)

merge_assay

merge_assay Merge assay data

Description

Merge assay data

Usage
merge_assay (
SElist,
assay_name,
additional_col_name = "data_source”,
discard_keys = NULL
)
Arguments
SElist named list of Summarized Experiments
assay_name name of the assay that should be extracted and merged

additional_col_name

string of column name that will be added to assay data for the distinction of

possible duplicated metrics that can arise from multiple projects

discard_keys character vector of string that will be discarded during creating BumpyMatrix

object

Value

BumpyMatrix or list with data.table + BumpyMatrix

mailto:arkadiusz.gladki@contractors.roche.com

merge_ MAE

61
Examples
mae <- get_synthetic_data("finalMAE_combo_2dose_nonoise”)
1istSE <- list(
combol = mae[[1]],
sa = mae[[2]]
)
merge_assay(listSE, "Normalized")
merge_MAE Merge multiple MultiAssayExperiment objects
Description
Merge multiple MultiAssayExperiment objects
Usage
merge_MAE (
MAElist,
additional_col_name = "data_source”,
discard_keys = c(”"normalization_type"”, "fit_source”, "record_id", "isDay@", "swap_sa",
"control_type”, "iso_level”, "conc_1", "conc_2")
)
Arguments
MAElist

Named list of MultiAssayExperiment objects.
additional_col_name

String with the name of the column that will be added to assay data for the
distinction of possible duplicated metrics that can arise from multiple projects.
discard_keys

Character vector of strings that will be discarded during creating BumpyMatrix
object.

Value

Merged MultiAssayExperiment object.

Examples

mael <- get_synthetic_data("”finalMAE_combo_2dose_nonoise")

mae2 <- get_synthetic_data("”"finalMAE_combo_2dose_nonoise")
merge_MAE(list(mael = mael, mae2 = mae2))

62 merge_SE

merge_metadata Merge metadata

Description

Merge metadata

Usage

merge_metadata(SElist, metadata_fields)

Arguments

SElist named list of SummarizedExperiments
metadata_fields
vector of metadata names that will be merged

Value

list of merged metadata

Examples

mae <- get_synthetic_data(”"finalMAE_small")
se <- mae[[1]]
1istSE <- list(
se,
se
)
metadata_fields <- identify_unique_se_metadata_fields(listSE)
merge_metadata(listSE, metadata_fields)

merge_SE Merge multiple Summarized Experiments

Description

Merge multiple Summarized Experiments

Usage
merge_SE(
SElist,
additional_col_name = "data_source”,
discard_keys = c(”"normalization_type"”, "fit_source”, "record_id", "isDay@", "swap_sa",

"control_type”, "iso_level”, "conc_1", "conc_2")

modifyData 63

Arguments

SElist named list of Summarized Experiments
additional_col_name

string with the name of the column that will be added to assay data for the
distinction of possible duplicated metrics that can arise from multiple projects

discard_keys character vector of string that will be discarded during creating BumpyMatrix
object
Value

merged SummarizedExperiment object

Examples

sel <- get_synthetic_data("finalMAE_small”)[[1]]
merge_SE(list(sel = sel, se2 = sel))

modifyData modify assay with additional data

Description

Reduce dimensionality of an assay by dropping extra data or combining variables.

Usage

modifyData(x, ...)

S3 method for class 'drug_name2'
modifyData(x, option, keep, ...)

S3 method for class 'data_source'
modifyData(x, option, keep, ...)

Default S3 method:

modifyData(x, option, keep, ...)
Arguments
X a data.table containing an assay

additional arguments passed to methods
option character string specifying the action to be taken, see Details

keep character string specifying the value of the active variable that will be kept

64 mrowData

Details

If an essay extracted from a SummarizedExperiment contains additional information, i.e. factors
beyond DrugName and CellLineName, that information will be treated in one of three ways, de-
pending on the value of option:

* drop: Some information will be discarded and only one value of the additional variable (cho-
sen by the user) will be kept.

* toDrug: The information is pasted together with the primary drug name. All observations are
kept.

* toCelllLine: As above, but pasting is done with cell line name.

Depending on the type of additional information, the exact details will differ. This is handled in the
app by adding special classes to the data tables and dispatching to S3 methods.

Following modification, the additional columns are discarded.

Value

modified object

Methods (by class)
* modifyData(drug_name2): includes the name and concentration of the second drug
e modifyData(data_source): includes the data source

e modifyData(default): includes the name of other additional variables

Examples

dt <- data.table::data.table(a = as.character(1:10), b = "data")
dt <- addClass(dt, "a")
modifyData(dt, "average”, keep = "b")

mrowData mrowData

Description

get rowData of all experiments

Usage

mrowData(mae)

Arguments

mae MultiAssayExperiment object

Value

data.table with all-experiments rowData

predict_conc_from_efficacy 65

Author(s)

Arkadiusz Gladki arkadiusz.gladki@contractors.roche.com

Examples

mae <- get_synthetic_data(”finalMAE_small.qgs")
mrowData(mae)

predict_conc_from_efficacy
Predict a concentration for a given efficacy with fit parameters.

Description

Predict a concentration for a given efficacy with fit parameters.

Usage

predict_conc_from_efficacy(efficacy, x_inf, x_0, ec50, h)

Arguments
efficacy Numeric vector representing efficacies to predict concentrations for.
x_inf Numeric vector representing the asymptotic value of the sigmoidal fit to the
dose-response data as concentration goes to infinity.
X_0 Numeric vector representing the asymptotic metric value corresponding to a
concentration of 0 for the primary drug.
ec50 Numeric vector representing the drug concentration at half-maximal effect.
h Numeric vector representing the hill coefficient of the fitted curve, which reflects
how steep
Details

The inverse of this function is predict_efficacy_from_conc.

Value

Numeric vector representing predicted concentrations from given efficacies and fit parameters.

See Also

predict_efficacy_from_conc .calculate_x50

Examples

predict_conc_from_efficacy(efficacy = c(1, 1.5), x_inf = 0.1, x_0 = 1, ec50 = 0.5, h = 2)

mailto:arkadiusz.gladki@contractors.roche.com

66 predict_efficacy_from_conc

predict_efficacy_from_conc
Predict efficacy values given fit parameters and a concentration.

Description

Predict efficacy values given fit parameters and a concentration.

Usage

predict_efficacy_from_conc(c, x_inf, x_0, ec50, h)

Arguments
c Numeric vector representing concentrations to predict efficacies for.
x_inf Numeric vector representing the asymptotic value of the sigmoidal fit to the
dose-response data as concentration goes to infinity.
X_0 Numeric vector representing the asymptotic metric value corresponding to a
concentration of 0 for the primary drug.
ec50 Numeric vector representing the drug concentration at half-maximal effect.
h Numeric vector representing the hill coefficient of the fitted curve, which reflects
how steep the dose-response curve is.
Details

The inverse of this function is predict_conc_from_efficacy.

Value

Numeric vector representing predicted efficacies from given concentrations and fit parameters.

See Also

predict_conc_from_efficacy

Examples

predict_efficacy_from_conc(c = 1, x_inf = 0.1, x_0 =1, ec50 = 0.5, h = 2)

predict_smooth_from_combo 67

predict_smooth_from_combo

Predict a smoothed response for a drug combination

Description
Predicts a ’smooth’ value for a single pair of drug concentrations by snapping to the nearest available

models from a metrics table and averaging their predictions. This is the combination equivalent of
’predict_efficacy_from_conc’.

Usage

predict_smooth_from_combo(conc_1, conc_2, metrics_merged)

Arguments
conc_1 A single numeric value for the desired concentration of the first drug.
conc_2 A single numeric value for the desired concentration of the second drug.

metrics_merged A data.table containing all pre-calculated curve fit parameters. Expects columns:
“dilution_drug’, ’cotrt_value’, 'ratio’, ’ec50’, ’h’, *x_inf”, *x_0’.
Value

A single numeric value for the predicted ’smooth’ response.

Examples

mae <- gDRutils::get_synthetic_data("combo_matrix")

se <- mae[[gDRutils::get_supported_experiments("combo"”)]]

dt_metrics <- gDRutils::convert_se_assay_to_dt(se[1, 1], "Metrics"”)[normalization_type == "RV"]
predict_smooth_from_combo(conc_1 = 1.2, conc_2 = 9.8, metrics_merged = dt_metrics)

prettify_flat_metrics Prettify metric names in flat "Metrics’ assay

Description

Map existing column names of a flattened "Metrics’ assay to prettified names.

Usage

prettify_flat_metrics(
X,
human_readable = FALSE,
normalization_type = c("GR", "RV")
)

68 process_batch

Arguments

X character vector of names to prettify.

human_readable boolean indicating whether or not to return column names in human readable
format. Defaults to FALSE.
normalization_type

character vector with a specified normalization type. Defaults to c("GR", "RV").

Details

A common use case for this function is to prettify column names from a flattened version of the
"Metrics"” assay. Mode "human_readable” = TRUE is often used for prettification in the context of
front-end applications, whereas "human_readable” = FALSE is often used for prettification in the
context of the command line.

Value

character vector of prettified names.

Examples

x <- c("CellLineName"”, "Tissue”, "Primary Tissue", "GR_gDR_x_mean", "GR_gDR_xc50", "RV_GDS_x_mean")
prettify_flat_metrics(x, human_readable = FALSE)

process_batch Process and save a batch of results.

Description

Process and save a batch of results.

Usage

process_batch(
batch,
start_index,
fun_name,
unique_id,
total_iterations,
temp_dir,
FUN,

Arguments

batch A subset of the vector or list x to be processed.
start_index Integer indicating the starting index of the batch in the original vector x.
fun_name Character string representing the name of the function FUN for use in file naming.

unique_id String with unique identifier for the current task and user to ensure file unique-
ness.

promote_fields 69
total_iterations
Integer indicating the total number of iterations in the original vector x.
temp_dir Character string specifying the directory where batch results are saved.
FUN A user-defined function to apply to each element of the batch.

Optional arguments passed to FUN.

Details

The function applies FUN to each element in batch, saves the results to a file named according
to the format <fun_name>_<unique_id>_<start_index>_of_<total_iterations>_batch.qgs,
and clears memory using gc() after saving.

Value

This function does not return a value. It saves the processed batch results to disk as a . gs file.

Examples

process_batch(list(1, 2, 3), 100, "my_function”, "unique_task_id_user”, 1000, tempdir(), function(x) x*2)

promote_fields Promote a nested field to be represented as a metadata field of the
SummarizedExperiment as either the rowData or colData.

Description

Promote a nested field to be represented as a metadata field of the SummarizedExperiment as either
the rowData or colData.

Usage
promote_fields(se, fields, MARGIN = c(1, 2))

Arguments
se SummarizedExperiment object.
fields Character vector of nested fields in a BumpyMatrix object to promote to meta-
data fields of a se.
MARGIN Numeric of values 1 or 2 indicating whether to promote fields to rows or columns
respectively.
Details

Revert this operation using demote_fields.

Value

A SummarizedExperiment object with new dimensions resulting from promoting given fields.

70 refine_coldata

See Also

demote_fields

Examples

mae <- get_synthetic_data("finalMAE_small")
se <- mae[[1]]
se <- promote_fields(se, "ReadoutValue", 2)

refine_coldata refine colData

Description

current improvements done on the colData as a standardization step:

* set default value for optional colData fields

Usage

refine_coldata(cd, se, default_v = "Undefined")

Arguments
cd DataFrame with colData
se a SummarizedExperiment object with drug-response data generate by gDR pipeline
default_v string with default value for optional columns in colData

Value

refined colData

Examples

mae <- get_synthetic_data("finalMAE_small.qgs")
refine_coldata(SummarizedExperiment: :colData(mae[[1]1]), mae[[11])

refine_rowdata 71

refine_rowdata refine rowData

Description
current improvements done on the rowData as a standardization step:

* set default value for optional rowData fields

Usage
refine_rowdata(rd, se, default_v = "Undefined")
Arguments
rd DataFrame with rowData
se a SummarizedExperiment object with drug-response data generate by gDR pipeline
default_v string with default value for optional columns in rowData
Value

refined rowData

Examples

mae <- get_synthetic_data("finalMAE_small.qgs")
refine_rowdata(SummarizedExperiment: :colData(mae[[1]1]), mae[[11])

remove_codrug_data Remove Codrug Data

Description

Remove Codrug Data

Usage
remove_codrug_data(
data,
prettify_identifiers = TRUE,
codrug_identifiers = c("drug_name2"”, "concentration2")
)
Arguments
data data.table with input data

prettify_identifiers

logical flag specifying if identifiers are expected to be prettified
codrug_identifiers

character vector with identifiers for the codrug columns

72 remove_drug_batch

Value

data.table without combination columns

Examples

dt <-
data.table: :data.table(
"Drug Name" = letters[seq_len(3)],

"Concentration” = seq_len(3),
"Drug Name 2" = letters[4:6],
"Concentration 2" = 4:6
)
dt

remove_codrug_data(dt)

remove_drug_batch Remove batch substring from drug id

Description

Gnumber, i.e. "G12345678" is currently the default format of drug_id. It’s also used as a drug name
in some cases.

Usage

remove_drug_batch(
drug_vec,
drug_p = "~G[0-91{8}",
sep_p = "["0-9|*_1",

batch_p = ".+"
)
Arguments
drug_vec character vector with drug id(s)
drug_p string with regex pattern for drug id. Set to Gnumber format by default: "G[0-
91{8}".
sep_p string with regex pattern for separator. Set to any character except for digit and
space
batch_p string with regex pattern for batch substring. By default set to any character(s):
Vl.+H
Details

By default, Gnumber(s) followed by any character (except for underscore and any digit) and any
batch substring are cleaned:

* G00060245.18 => G00060245
* G00060245.1-8 => G00060245
* G02948263.1-1.DMA => G02948263

rename_bumpy 73

* Gnumber followed by the codrug

- G03252046.1-2;G00376771 => G03252046
* Gnumber followed by the two codrugs

- G03256376.1-2;G00376771.1-19;G02557755 => G03256376
e Gnumber followed by the drug name

— G00018838, Cisplatin => G00018838

By default, Gnumber(s) followed by the "_" or digit (regardless the batch substring) are not cleaned:

* Gnumber with suffix added to prevent duplicated ids
- G00060245_(G00060245.1-8)

* too long Gnumber
- G123456789.1-12

Value

charvec with Gnumber(s)

Examples

remove_drug_batch("G00060245.18")
remove_drug_batch(”"G00060245.1-8")
remove_drug_batch("G00060245.1-1.DMA")

remove_drug_batch("G03252046.1-2;G00376771")

remove_drug_batch("G00018838, Cisplatin”)
remove_drug_batch(”"G03256376.1-2;G00376771.1-19;G02557755")
remove_drug_batch("G00060245_(G00060245.1-8)")
remove_drug_batch(c("G00060245.18", "G0O0060245.1-8", "GOV0O60245.1-1.DMA"))

remove_drug_batch("DRUG_01.123", drug_p = "DRUG_[0-9]+")
remove_drug_batch("G00001234:22-1", sep_p = ":")
remove_drug_batch("G00001234.28", batch_p = "[0-9]+")

rename_bumpy Rename BumpyMatrix

Description

Rename BumpyMatrix

Usage

rename_bumpy (bumpy, mapping_vector)

Arguments

bumpy a BumpyMatrix object

mapping_vector a named vector for mapping old and new values. The names of the character
vector indicate the source names, and the corresponding values the destination
names.

74 rename_DFrame

Value

a renamed BumpyMatrix object

Examples

mae <- get_synthetic_data(”finalMAE_small.qgs")
se <- mae[[1]]
assay <- SummarizedExperiment::assay(se)

rename_bumpy(assay, c(”Concentration” = "conc"))
rename_DFrame Rename DFrame
Description

Rename DFrame

Usage

rename_DFrame(df, mapping_vector)

Arguments

df a DFrame object
mapping_vector a named vector for mapping old and new values. The names of the character

vector indicate the source names, and the corresponding values the destination
names.

Value

a renamed DFrame object

Examples

mae <- get_synthetic_data(”"finalMAE_small.gs")
rename_DFrame (SummarizedExperiment: :rowData(mae[[1]1]), c("Gnumber” = "Gnumberi"))

round_concentration 75

round_concentration Round concentration to ndigit significant digits

Description

Round concentration to ndigit significant digits

Usage

round_concentration(x, ndigit = 3)

Arguments

X value to be rounded.
ndigit number of significant digits (default = 4).

Value

rounded x

Examples

round_concentration(x = ¢(0.00175,0.00324,0.0091), ndigit = 1)

set_constant_fit_params
Set fit parameters for a constant fit.

Description

Replace values for flat fits: ec50 =0, h = 0.0001 and xc50 = +/- Inf

Usage

set_constant_fit_params(out, mean_norm_value)

Arguments

out Named list of fit parameters.

mean_norm_value
Numeric value that be used to set all parameters that can be calculated from the
mean.

Value

Modified named list of fit parameters.

Examples

na <- list(x_0@ = NA)
set_constant_fit_params(na, mean_norm_value = 0.6)

76 set_unique_cl_names_dt

set_unique_cl_names Set Unique Parental Identifiers

Description

This function sets the Cel1LineName field in colData to be unique by appending the clid in paren-
theses for duplicates.

Usage

set_unique_cl_names(se)

Arguments

se A SummarizedExperiment object.

Value

A SummarizedExperiment object with unique CellLineName in colData.

Examples

se <- SummarizedExperiment::SummarizedExperiment(

assays = list(counts = matrix(1:4, ncol = 2)),

colData = S4Vectors::DataFrame(CellLineName = c("ID1", "ID1"), clid = c("C1", "C2"))
)

se <- set_unique_cl_names(se)

set_unique_cl_names_dt
Set unique primary cell line identifiers in the table

Description

This function sets the primary cell line field in data.frame-like object to be unique by appending the
secondary cell line field in parentheses for duplicates.

Usage

set_unique_cl_names_dt(
dt,
primary_name = get_env_identifiers("cellline_name"),
secondary_name = get_env_identifiers(”cellline"),

n o n

sep =

set_unique_drug_names 77

Arguments

dt data.table, data.frame or DFrame with the data
primary_name string with the name of the primary cell line field
secondary_name string with the name of the secondary cell line field

sep string with separator added before suffix

Value

fixed input table with unique primary cell line field in dt

Examples

col_data <- S4Vectors::DataFrame(CellLineName = c("ID1"”, "ID1"), clid = c("C1", "C2"))
col_data <- set_unique_cl_names_dt(col_data)

set_unique_drug_names Set Unique Drug Names

Description

This function sets the DrugName, DrugName_2, and DrugName_3 fields in rowData to be unique by
appending the corresponding Gnumber, Gnumber_2, and Gnumber_3 in parentheses for duplicates.

Usage

set_unique_drug_names(se)

Arguments

se A SummarizedExperiment object.

Value

A SummarizedExperiment object with unique DrugName fields in rowData.

Examples

se <- SummarizedExperiment: :SummarizedExperiment(
assays = list(counts = matrix(1:9, ncol = 3)),
rowData = S4Vectors: :DataFrame(DrugName = c("DrugA”, "DrugA"”, "DrugB"),
Gnumber = c("G1", "G2", "G5"),
DrugName_2 = c("DrugC"”, "DrugC", "DrugD"),
Gnumber_2 = c("G3", "G4", "G5")
))

se <- set_unique_drug_names(se)

78 set_unique_drug_names_dt

set_unique_drug_names_dt
Set unique primary drug identifiers in the table

Description

This function sets the primary drug field(s) in data.frame-like object to be unique by appending
the secondary drug field(s) in parentheses for duplicates. By default DrugName, DrugName_2, and
DrugName_3 are primary drug fields, while Ghnumber, Gnumber_2, and Gnumber_3 are their respec-
tive secondary drug fields.

Usage
set_unique_drug_names_dt(
dt,
primary_names = unlist(get_env_identifiers()[(c("drug_name"”, "drug_name2",

"drug_name3”))1),
secondary_names = unlist(get_env_identifiers()[(c("drug”, "drug2", "drug3”))1),

sep =

)

Arguments

dt data.table, data.frame or DFrame with the data

primary_names charvec with the names of the primary drug field(s)

secondary_names
charvec with the name of the secondary drug field(s)

sep string with separator added before suffix

Value

fixed input table with unique primary drug field in dt

Examples

row_data <- S4Vectors::DataFrame(
DrugName = c("DrugA”, "DrugA", "DrugB"),
Gnumber = c("G1", "G2", "G5"),
DrugName_2 = c("DrugC"”, "DrugC", "DrugD"),
Gnumber_2 = c("G3", "G4", "G5")

)

row_data <- set_unique_drug_names_dt(row_data)

set_unique_identifiers 79

set_unique_identifiers
Set Unique Identifiers in MultiAssayExperiment

Description

This function sets the CellLineName in colData and DrugName fields in rowData to be unique for
each SummarizedExperiment in a MultiAssayExperiment.

Usage

set_unique_identifiers(mae)

Arguments

mae A MultiAssayExperiment object.

Value

A MultiAssayExperiment object with unique identifiers.

Examples

sel <- SummarizedExperiment::SummarizedExperiment(
assays = list(counts = matrix(1:4, ncol = 2)),
colData = S4Vectors::DataFrame(parental_identifier = ¢c("ID1", "ID1"), clid = c("C1", "C2")),
rowData = S4Vectors: :DataFrame(DrugName = c("DrugA”, "DrugA"), Gnumber = c("G1", "G2"))
)
rownames (SummarizedExperiment::colData(sel)) <- c("cl1”, "cl2")
rownames (SummarizedExperiment: :rowData(sel)) <- c("gl1", "g")
se2 <- SummarizedExperiment::SummarizedExperiment(
assays = list(counts = matrix(5:8, ncol = 2)),
colData = S4Vectors: :DataFrame(parental_identifier = ¢c("ID2", "ID2"), clid = c("C3", "C4")),
rowData = S4Vectors: :DataFrame(DrugName = c("DrugB", "DrugB"), Gnumber = c("G3", "G4"))
)
rownames (SummarizedExperiment::colData(se2)) <- c("cl3"”, "cl4")
rownames (SummarizedExperiment: :rowData(se2)) <- c("g3", "g4")
mae <- MultiAssayExperiment: :MultiAssayExperiment(experiments = list(sel = sel, se2 = se2))
mae <- set_unique_identifiers(mae)

set_unique_names_dt Set unique primary identifiers in the data.frame-like objects

Description
This function sets the primary field in the data.frame-like objects to be unique by appending the
secondary field in parentheses for duplicates.

Usage

set_unique_names_dt(dt, primary_name, secondary_name, sep = " ")

80 SE_metadata

Arguments

dt data.table, data.frame or DFrame with data
primary_name string with the name of the primary field
secondary_name string with the name of the secondary field

sep string with separator added before suffix

Value

fixed input table with unique primary field in the table

Examples

col_data <- S4Vectors::DataFrame(CellLineName = c("ID1"”, "ID1"), clid = c("C1", "C2"))
col_data <- set_unique_names_dt(col_data, primary_name = "CellLineName”, secondary_name = "clid")

SE_metadata Get and set metadata for parameters on a SummarizedExperiment ob-
ject.

Description

Set metadata for the fitting parameters that define the Metrics assay in SummarizedExperiment
object metadata.

Usage
set_SE_fit_parameters(se, value)
set_SE_processing_metadata(se, value)
set_SE_keys(se, value)
set_SE_experiment_metadata(se, value, append = TRUE)
set_SE_experiment_raw_data(se, value)
get_SE_fit_parameters(se)
get_SE_processing_metadata(se)
get_SE_experiment_raw_data(se)
get_SE_experiment_metadata(se)
get_SE_keys(se, key_type = NULL)
get_SE_identifiers(se, id_type = NULL, simplify = TRUE)

set_SE_identifiers(se, value)

shorten_normalization_type_name 81

Arguments
se a SummarizedExperiment object for which to add fit parameter metadata.
value named list of metadata for fit parameters.
append Boolean indicating whether to append the new metadata value to the existing
entry.
key_type string of a specific key type (i.e. 'nested_keys’, etc.).
id_type string of a specific id type (i.e. ’duration’, ’cellline_name’, etc.).
simplify Boolean indicating whether output should be simplified.
Details

For xet_SE_processing_metadata, get/set metadata for the processing info that defines the date_processed
and packages versions in SummarizedExperiment object metadata. For xet_SE_fit_parameters,

get/set metadata for fit parameters used to construct the Metrics assay in a SummarizedExperiment

object.

Value

se with added metadata.

Examples

mae <- get_synthetic_data(”finalMAE_small.gs")
se <- mae[[1]1]
get_SE_fit_parameters(se)

mae <- get_synthetic_data(”finalMAE_small.qgs")
se <- mae[[1]]
meta <- get_SE_processing_metadata(se)

mae <- get_synthetic_data(”finalMAE_small.qgs")
se <- mae[[1]]
get_SE_experiment_raw_data(se)

mae <- get_synthetic_data(”"finalMAE_small.gs")
se <- mae[[1]]
get_SE_experiment_metadata(se)

mae <- get_synthetic_data(”finalMAE_small.qgs")
se <- mae[[1]]
get_SE_identifiers(se)

shorten_normalization_type_name
shorten normalization type

Description

shorten normalization type

82

Usage

split_big_table_for_xIsx

shorten_normalization_type_name(x)

Arguments

X

Value

string with normalization type

shortened string representing the normalization type

Examples

shorten_normalization_type_name("GRvalue")

split_big_table_for_xlsx

Split big table

Description

Helper function for saving big tables in an Excel file. Excel has a sheet size limit, if the table is
too large it will not be possible to save such a file. This function allows you to split the table into
smaller parts so that saving can be possible

Usage

split_big_table_for_xlsx(dt_list, max_row = 1000000, max_col = 16000)

Arguments

dt_list

max_row

max_col

Value

list of data.tables

Examples

list of data.tables. Each data.table will be checked and split if meet the criteria

integer defining the maximum number of rows in one sheet, the rows will be
divided into portions of this size. Default value, 1 000 000, is based on excel
limit - 1 048 576 with extra safety margin

integer defining the maximum number of columns in one sheet, the columns will
be divided into portions of this size. Default value, 16 000, is based on excel
limit - 16 384 with extra safety margin

too_large_dt <- list(data.table::data.table(matrix(seq_len(300)), nrow = 10))
split_big_table_for_xlsx(too_large_dt, max_row = 250)

split_SE_components 83

split_SE_components split_SE_components

Description

Divide the columns of an input data.table into treatment metadata, condition metadata, experiment
metadata, and assay data for further analysis. This will most commonly be used to identify the
different components of a SummarizedExperiment object.

Usage

split_SE_components(df_, nested_keys = NULL, combine_on = 1L)

Arguments
df_ data.table with drug-response data
nested_keys character vector of keys to exclude from the row or column metadata, and to
instead nest within an element of the matrix. See details.
combine_on integer value of 1 or 2, indicating whether unrecognized columns should be
combined on row or column respectively. Defaults to 1.
Details

Named list containing the following elements:

"treatment_md'': treatment metadata
"condition_md'': condition metadata

"data_fields'': all data.table column names corresponding to fields nested within a BumpyMatrix
cell

"experiment_md'': metadata that is constant for all entries of the data.table
"identifiers_md'': key identifier mappings
The nested_keys provides the user the opportunity to specify that they would not like to use

that metadata field as a differentiator of the treatments, and instead, incorporate it into a nested
DataFrame in the BumpyMatrix matrix object.

In the event that if any of the nested_keys are constant throughout the whole data.table, they will
still be included in the DataFrame of the BumpyMatrix and not in the experiment_metadata.

Columns within the df_ will be identified through the following logic: First, the known data fields
and any specified nested_keys are extracted. Following that, known cell and drug metadata fields
are detected, and any remaining columns that represent constant metadata fields across all rows
are extracted. Next, any cell line metadata will be heuristically extracted. Finally, all remaining
columns will be combined on either the rows or columns as specified by combine_on.

Value

named list containing different elements of a SummarizedExperiment; see details.

Examples

split_SE_components(data.table: :data.table(clid = "CL1", Gnumber = "DrugA"))

84 standardize_se

standardize_mae Standardize MAE by switching from custom identifiers into gDR-
default

Description

Standardize MAE by switching from custom identifiers into gDR-default

Usage

standardize_mae(mae, use_default = TRUE)

Arguments
mae a MultiAssayExperiment object with drug-response data generate by gDR pipeline
use_default boolean indicating whether or not to use default identifiers for standardization
Value

mae a MultiAssayExperiment with default gDR identifiers

Examples

mae <- get_synthetic_data(”finalMAE_small.gs")
S4Vectors: :metadata(mae[[1]1])$identifiers$drug <- "druug”
standardize_mae(mae)

standardize_se Standardize SE by switching from custom identifiers into gDR-default

Description

Standardize SE by switching from custom identifiers into gDR-default

Usage

standardize_se(se, use_default = TRUE)

Arguments
se a SummarizedExperiment object with drug-response data generate by gDR pipeline
use_default boolean indicating whether or not to use default identifiers for standardization
Value

se a SummarizedExperiment with default gDR identifiers

strip_first_and_last_char 85

Examples

mae <- get_synthetic_data(”"finalMAE_small.qgs")

se <- mae[[1]]

S4Vectors: :metadata(se)$identifiers$drug <- "druug”
standardize_se(se)

strip_first_and_last_char
String first and last characters of a string.

Description

String first and last characters of a string.

Usage

strip_first_and_last_char(jstring)

Arguments

jstring String of any number of characters greater than 1.

Details

This is most often used to remove the JSON brackets '{' and '}"'.

Value

String with first and last characters stripped.

throw_msg_if_duplicates
throw message if assay data.table contains duplicated rows

Description

An auxiliary function that checks for duplicated rows in assay data.table, In case of duplicates
it throws a message. The messsage function is by default stop() The message function can be
customized with msg_f parameter

Usage
throw_msg_if_duplicates(
dt,
assay_name = "unknown",
msg_f = stop,

preview_max_numb = 4

86 update_env_idfs_from_mae

Arguments
dt data.table with assay data
assay_name string with the name of the assay
msg_f function to be used to throw the message

preview_max_numb
number of rows to preview if duplicates found

Examples

sdata <- get_synthetic_data(”finalMAE_small")
smetrics_data <- convert_se_assay_to_dt(sdata[[1]], "Metrics")
throw_msg_if_duplicates(smetrics_data, assay_name = "Metrics”, msg_f = futile.logger::flog.info)

update_env_idfs_from_mae
Update environment identifiers from MAE object identifiers

Description

Update environment identifiers from MAE object identifiers

Usage

update_env_idfs_from_mae(mae_idfs)

Arguments

mae_idfs A list containing MAE identifiers

Value

NULL

Examples

update_env_idfs_from_mae(list(get_env_identifiers()))

update_idfs_synonyms 87

update_idfs_synonyms Update gDR synonyms for the identifier

Description

Update gDR synonyms for the identifier

Usage

update_idfs_synonyms(data, dict = get_idfs_synonyms())

Arguments
data list of charvec with identifiers data
dict list with dictionary
Value
list
Examples
mdict <- list(duration = "time")
iv <= ¢("Time"”, "Duration”, "time")

update_idfs_synonyms(iv, dict = mdict)

validate_dimnames Validate dimnames

Description

Assure that dimnames of two objects are the same

Usage
validate_dimnames(obj, obj2, skip_empty = TRUE)

Arguments
obj first object with dimnames to compare
obj2 second object with dimnames to compare
skip_empty a logical indicating whether to skip comparison if a given dimname is empty in
the case of both objects
Value

NULL

88 validate_identifiers

validate_identifiers Check that specified identifier values exist in the data.

Description

Check that specified identifier values exist in the data and error otherwise.

Usage

validate_identifiers(
df,
identifiers = NULL,
reg_ids = NULL,
exp_one_ids = NULL

)
Arguments
df data.table with colnames.
identifiers Named list of identifiers where the names are standardized identifier names. If
not passed, defaults to get_env_identifiers().
reg_ids Character vector of standardized identifier names required to pass identifier val-
idation.
exp_one_ids Character vector of standardized identifiers names where only one identifier
value is expected. If not passed, defaults to get_expect_one_identifiers().
Details

Note that this does NOT set the identifiers anywhere (i.e. environment or SummarizedExperiment
object). If identifiers do not validate, will throw error as side effect.

Value

Named list of identifiers modified to pass validation against the input data. Errors with explanatory
message if validation cannot pass with the given identifiers and data.

Examples

validate_identifiers(
S4Vectors: :DataFrame(”Barcode” = NA, "Duration” = NA, "Template” = NA, "clid” = NA),
req_ids = "barcode”

)

validate_json 89

validate_json Validate JSON against a schema.

Description

Validate JSON describing an object against a schema.

Usage

validate_json(json, schema_path)

Arguments

json String of JSON in memory.

schema_path String of the schema to validate against.

Details
This is most often used to validate JSON before passing it in as a document to an ElasticSearch
index.

Value

Boolean of whether or not JSON successfully validated.

Examples

json <= '{}'

validate_MAE Validate MultiAssayExperiment object

Description
Function validates correctness of SE included in MAE by checking multiple cases:
* detection of duplicated rowData/colData,
* incompatibility of rownames/colnames,
* occurrence of necessary assays,
* detection of mismatch of CLIDs inside colData and colnames (different order),

¢ correctness of metadata names.

Usage
validate_MAE(mae)

Arguments

mae MultiAssayExperiment object produced by the gDR pipeline

90 validate_mae_with_schema

Value
NULL invisibly if the MultiAssayExperiment is valid. Throws an error if the MultiAssayExperiment
is not valid.

Author(s)

Bartosz Czech bartosz.czech @contractors.roche.com

Examples

mae <- get_synthetic_data("finalMAE_small")
validate_MAE (mae)

validate_mae_with_schema
Validate MAE against a schema.

Description

Validate MAE object against a schema. Currently only SEs are validated TODO: add mae.json
schema and validate full MAE object

Usage

validate_mae_with_schema(
mae,
schema_package = Sys.getenv(”SCHEMA_PACKAGE"”, "gDRutils"),
schema_dir_path = Sys.getenv(”SCHEMA_DIR_PATH"”, "schemas"),

schema = c(se = "se.json”, mae = "mae.json")
)
Arguments
mae MultiAssayExperiment object

schema_package string name of the package with JSON schema files
schema_dir_path
path to the dir with JSON schema files

schema named charvec with filenames of schemas to validate against.

Value

Boolean of whether or not mae is valid

Examples

mae <- get_synthetic_data("finalMAE_small")
validate_mae_with_schema(mae)

mailto:bartosz.czech@contractors.roche.com

validate_SE 91

validate_SE Validate SummarizedExperiment object

Description
Function validates correctness of SE by checking multiple cases:
* detection of duplicated rowData/colData,
* incompatibility of rownames/colnames,
* occurrence of necessary assays,
e detection of mismatch of CLIDs inside colData and colnames (different order),

e correctness of metadata names.

Usage
validate_SE(se, expect_single_agent = FALSE)

Arguments

se SummarizedExperiment object produced by the gDR pipeline
expect_single_agent
a logical indicating if the function should check whether the SummarizedExper-
iment is single-agent data

Value

NULL invisibly if the SummarizedExperiment is valid. Throws an error if the SummarizedExperi-
ment is not valid.

Examples

mae <- get_synthetic_data("finalMAE_small")
se <- mae[[1]]
validate_SE(se)

validate_se_assay_name
Check whether or not an assay exists in a SummarizedExperiment ob-
Jject.

Description

Check for the presence of an assay in a SummarizedExperiment object.

Usage

validate_se_assay_name(se, name)

92 validate_se_assay_name

Arguments
se A SummarizedExperiment object.
name String of name of the assay to validate.
Value

NULL invisibly if the assay name is valid. Throws an error if the assay is not valid.

Examples

mae <- get_synthetic_data("finalMAE_small")
se <- mae[[1]]
validate_se_assay_name(se, "RawTreated")

Index

+x SE_operators
aggregate_assay, 9
demote_fields, 26
get_MAE_identifiers, 42
identify_unique_se_metadata_fields,

52

merge_assay, 60
merge_MAE, 61
merge_metadata, 62
merge_SE, 62
promote_fields, 69
SE_metadata, 80
split_SE_components, 83

* assay_names
get_assay_names, 32
get_combo_assay_names, 34
get_combo_base_assay_names, 34
get_combo_score_assay_names, 35
get_env_assay_names, 37

* combination_data
convert_combo_data_to_dt, 17
convert_combo_field_to_assay, 18
define_matrix_grid_positions, 25
get_additional_variables, 31
get_combo_excess_field_names, 35
get_combo_score_field_names, 36
has_single_codrug_data, 48
has_valid_codrug_data, 49
is_combo_data, 53
remove_codrug_data, 71
round_concentration, 75

* convert
convert_mae_assay_to_dt, 18
convert_se_assay_to_custom_dt, 22
convert_se_assay_to_dt, 23
df_to_bm_assay, 27
flatten, 29

* duplicates
get_assay_dt_duplicated_rows, 32
get_assay_reg_uniqg_cols, 33
get_duplicated_rows, 37
has_assay_dt_duplicated_rows, 47
has_dt_duplicated_rows, 48

93

throw_msg_if_duplicates, 85

* experiment

get_experiment_groups, 39
get_supported_experiments, 45
validate_dimnames, 87
validate_MAE, 89
validate_SE, 91
validate_se_assay_name, 91

* fit_curves

.set_invalid_fit_params, 7
cap_xc5o, 15

fit_curves, 28

logisticFit, 55
predict_conc_from_efficacy, 65
predict_efficacy_from_conc, 66
predict_smooth_from_combo, 67
set_constant_fit_params, 75

* identifiers

get_default_identifiers, 36
get_expect_one_identifiers, 39
get_identifiers_dt, 40
get_idfs_synonyms, 41
get_required_identifiers, 44
headers, 50

identifiers, 51
prettify_flat_metrics, 67
update_env_idfs_from_mae, 86
update_idfs_synonyms, 87
validate_identifiers, 88

* internal

.convert_mae_summary_to_json, 5
.convert_norm_specific_metrics, 6
.prep_cd_conc_cap_dict, 6
.shap_conc_to_model, 7
average_pvalues, 12

capVals, 13

gDRutils-package, 4
geometric_mean, 31

* json_const

get_isobologram_columns, 41
get_settings_from_json, 44

* json_convert

convert_colData_to_json, 16

94

convert_mae_to_json, 20
convert_metadata_to_json, 20
convert_rowData_to_json, 21
convert_se_to_json, 24
strip_first_and_last_char, 85
validate_mae_with_schema, 90

* json_validate

validate_json, 89

+ metadata_management

addClass, 8
modifyData, 63

* package_utils

.standardize_conc, 8

apply_bumpy_function, 9

assert_choices, 10

average_biological_replicates_dt
11

calc_sd, 13

cap_assay_infinities, 14

extend_normalization_type_name, 27

geometric_mean, 31

get_env_var, 38

get_gDR_session_info, 40

get_non_empty_assays, 42

get_synthetic_data, 45

is_any_exp_empty, 53

is_exp_empty, 54

is_mae_empty, 54

loop, 57

MAEpply, 58

map_conc_to_standardized_conc, 59

mcolData, 59

mrowData, 64

process_batch, 68

remove_drug_batch, 72

shorten_normalization_type_name,
81

split_big_table_for_xlsx, 82

x standardize_ MAE

get_optional_coldata_fields, 43
get_optional_rowdata_fields, 43
refine_coldata, 70
refine_rowdata, 71
rename_bumpy, 73
rename_DFrame, 74
set_unique_cl_names, 76
set_unique_cl_names_dt, 76
set_unique_drug_names, 77
set_unique_drug_names_dt, 78
set_unique_identifiers, 79
set_unique_names_dt, 79
standardize_mae, 84

INDEX

standardize_se, 84
* test_helpers
gen_synthetic_data, 30
get_testdata, 46
get_testdata_codilution, 46
get_testdata_combo, 47
.convert_mae_summary_to_json, 5
.convert_norm_specific_metrics, 6
.prep_cd_conc_cap_dict, 6
.set_invalid_fit_params, 7
.shap_conc_to_model, 7
.standardize_conc, 8

addClass, 8

aggregate_assay, 9
apply_bumpy_function, 9

as.list, 57

assert_choices, 10
average_biological_replicates_dt, 11
average_pvalues, 12

bplapply, 57

calc_sd, 13
cap_assay_infinities, 14
cap_xc5o, 15

capVals, 13
convert_colData_to_json, 16
convert_combo_data_to_dt, 17
convert_combo_field_to_assay, 18
convert_mae_assay_to_dt, 18
convert_mae_to_json, 20
convert_metadata_to_json, 20
convert_rowData_to_json, 21
convert_se_assay_to_custom_dt, 22
convert_se_assay_to_dt, 23
convert_se_to_json, 24

define_matrix_grid_positions, 25
demote_fields, 26
df_to_bm_assay, 27

extend_normalization_type_name, 27

fit_curves, 28
flatten, 29

gDRutils (gDRutils-package), 4
gDRutils-package, 4
gen_synthetic_data, 30
geometric_mean, 31
get_additional_variables, 31
get_assay_dt_duplicated_rows, 32
get_assay_names, 32

INDEX

get_assay_reg_uniqg_cols, 33
get_combo_assay_names, 34
get_combo_base_assay_names, 34
get_combo_excess_field_names, 35
get_combo_score_assay_names, 35
get_combo_score_field_names, 36
get_default_identifiers, 36
get_duplicated_rows, 37
get_env_assay_names, 37
get_env_identifiers (identifiers), 51
get_env_var, 38
get_expect_one_identifiers, 39
get_experiment_groups, 39
get_gDR_session_info, 40
get_header (headers), 50
get_identifiers_dt, 40
get_idfs_synonyms, 41
get_isobologram_columns, 41
get_MAE_identifiers, 42
get_non_empty_assays, 42
get_optional_coldata_fields, 43
get_optional_rowdata_fields, 43
get_prettified_identifiers
(identifiers), 51
get_required_identifiers, 44
get_SE_experiment_metadata
(SE_metadata), 80
get_SE_experiment_raw_data
(SE_metadata), 80
get_SE_fit_parameters (SE_metadata), 80
get_SE_identifiers (SE_metadata), 80
get_SE_keys (SE_metadata), 80
get_SE_processing_metadata
(SE_metadata), 80
get_settings_from_json, 44
get_supported_experiments, 45
get_synthetic_data, 45
get_testdata, 46
get_testdata_codilution, 46
get_testdata_combo, 47

has_assay_dt_duplicated_rows, 47
has_dt_duplicated_rows, 48
has_single_codrug_data, 48
has_valid_codrug_data, 49
headers, 50

identifiers, 51
identify_unique_se_metadata_fields, 52
is_any_exp_empty, 53

is_combo_data, 53

is_exp_empty, 54

is_mae_empty, 54

95

lapply, 57
logisticFit, 55
loop, 57

MAEpply, 58
map_conc_to_standardized_conc, 59
mcolData, 59

merge_assay, 60

merge_MAE, 61

merge_metadata, 62

merge_SE, 62

modifyData, 63

mrowData, 64
MultiAssayExperiment, 19

oob, 14

predict_conc_from_efficacy, 65
predict_efficacy_from_conc, 66
predict_smooth_from_combo, 67
prettify_flat_metrics, 67
process_batch, 68
promote_fields, 69

refine_coldata, 70

refine_rowdata, 71
remove_codrug_data, 71
remove_drug_batch, 72

rename_bumpy, 73

rename_DFrame, 74
reset_env_identifiers (identifiers), 51
round_concentration, 75

SE_metadata, 80
set_constant_fit_params, 75
set_env_identifier (identifiers), 51
set_SE_experiment_metadata
(SE_metadata), 80
set_SE_experiment_raw_data
(SE_metadata), 80
set_SE_fit_parameters (SE_metadata), 80
set_SE_identifiers (SE_metadata), 80
set_SE_keys (SE_metadata), 80
set_SE_processing_metadata
(SE_metadata), 80
set_unique_cl_names, 76
set_unique_cl_names_dt, 76
set_unique_drug_names, 77
set_unique_drug_names_dt, 78
set_unique_identifiers, 79
set_unique_names_dt, 79
shorten_normalization_type_name, 81
split_big_table_for_xlsx, 82

96 INDEX

split_SE_components, 83
standardize_mae, 84

standardize_se, 84
strip_first_and_last_char, 85
SummarizedExperiment, I8, 23, 54, 81, 83, 92

throw_msg_if_duplicates, 85

update_env_idfs_from_mae, 86
update_idfs_synonyms, 87

validate_dimnames, 87
validate_identifiers, 88
validate_json, 89
validate_MAE, 89
validate_mae_with_schema, 90
validate_SE, 91
validate_se_assay_name, 91

	gDRutils-package
	.convert_mae_summary_to_json
	.convert_norm_specific_metrics
	.prep_cd_conc_cap_dict
	.set_invalid_fit_params
	.snap_conc_to_model
	.standardize_conc
	addClass
	aggregate_assay
	apply_bumpy_function
	assert_choices
	average_biological_replicates_dt
	average_pvalues
	calc_sd
	capVals
	cap_assay_infinities
	cap_xc50
	convert_colData_to_json
	convert_combo_data_to_dt
	convert_combo_field_to_assay
	convert_mae_assay_to_dt
	convert_mae_to_json
	convert_metadata_to_json
	convert_rowData_to_json
	convert_se_assay_to_custom_dt
	convert_se_assay_to_dt
	convert_se_to_json
	define_matrix_grid_positions
	demote_fields
	df_to_bm_assay
	extend_normalization_type_name
	fit_curves
	flatten
	gen_synthetic_data
	geometric_mean
	get_additional_variables
	get_assay_dt_duplicated_rows
	get_assay_names
	get_assay_req_uniq_cols
	get_combo_assay_names
	get_combo_base_assay_names
	get_combo_excess_field_names
	get_combo_score_assay_names
	get_combo_score_field_names
	get_default_identifiers
	get_duplicated_rows
	get_env_assay_names
	get_env_var
	get_expect_one_identifiers
	get_experiment_groups
	get_gDR_session_info
	get_identifiers_dt
	get_idfs_synonyms
	get_isobologram_columns
	get_MAE_identifiers
	get_non_empty_assays
	get_optional_coldata_fields
	get_optional_rowdata_fields
	get_required_identifiers
	get_settings_from_json
	get_supported_experiments
	get_synthetic_data
	get_testdata
	get_testdata_codilution
	get_testdata_combo
	has_assay_dt_duplicated_rows
	has_dt_duplicated_rows
	has_single_codrug_data
	has_valid_codrug_data
	headers
	identifiers
	identify_unique_se_metadata_fields
	is_any_exp_empty
	is_combo_data
	is_exp_empty
	is_mae_empty
	logisticFit
	loop
	MAEpply
	map_conc_to_standardized_conc
	mcolData
	merge_assay
	merge_MAE
	merge_metadata
	merge_SE
	modifyData
	mrowData
	predict_conc_from_efficacy
	predict_efficacy_from_conc
	predict_smooth_from_combo
	prettify_flat_metrics
	process_batch
	promote_fields
	refine_coldata
	refine_rowdata
	remove_codrug_data
	remove_drug_batch
	rename_bumpy
	rename_DFrame
	round_concentration
	set_constant_fit_params
	set_unique_cl_names
	set_unique_cl_names_dt
	set_unique_drug_names
	set_unique_drug_names_dt
	set_unique_identifiers
	set_unique_names_dt
	SE_metadata
	shorten_normalization_type_name
	split_big_table_for_xlsx
	split_SE_components
	standardize_mae
	standardize_se
	strip_first_and_last_char
	throw_msg_if_duplicates
	update_env_idfs_from_mae
	update_idfs_synonyms
	validate_dimnames
	validate_identifiers
	validate_json
	validate_MAE
	validate_mae_with_schema
	validate_SE
	validate_se_assay_name
	Index

